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CHAPTER 1

Strong L? solutions of the incompressible Navier—Stokes equations in

Rn

1.1 Introduction

The aim of this chapter is to provide detailed notes on Tosio Kato’s article on the incom-
pressible Navier—Stokes equation in the whole space [8]. We shall prove some results on the
existence of local and global solutions of the Cauchy problem including some decay properties
for the Navier—Stokes equation in the whole space domain R", n = 2,3,4,... :

du—Au+ (u-V)u+Vp=f(z), t>0zeR"
V-u=0, (1.1)
u(x,0) = uo(x),

where ug € PL™(R") := PL™"(R™;R™) (sometimes denoted by just PL™ for short). Here
we shall be concerned with solutions in the mild sense satisfying a corresponding integral
equation and we only consider the inhomogeneous case where f = 0. Now, the equations
are scale invariant under the scaling transformation

(ux(z,t), pa(z, 1) — (Mu(Az, A2t), A2p(Az, A*t))  for each A > 0.

Hence, this motivates our pursuit of establishing well-posedness for the Navier—Stokes equa-
tions in functions spaces whose norms preserve this scale invariance, since it should naturally
lead to global-in-time well-posedness results. In doing so for the Navier—Stokes equations,
however, some obstacles arise such as the continuity of the bilinear terms and the estimates
for the heat semi-group, for instance. These issues are at the core of the celebrated problem
on the global regularity and well-posedness of the Navier—Stokes equations.



1.2 Main results

Theorem 1.1. Let ug € PL™. Then there exists a T > 0 and a unique solution u to
such that

t1=m9/2y e BC([0,T); PLY) for n < q < oo, (1.2)
=247y e BC([0,T); PLY) forn < q < o, (1.3)
both with value zero at t = 0 except when n = q in , in which case u(x,0) = up(x).
1 1 2
Moreover, uw e L"((0,1y); PL7), — = 3 (1 — 2), n<gqg< 5 for some 0 < Ty < T.
r q n—

Theorem 1.2. There is a A > 0 such that if |uo|,, < A, then the solution u in Theorem
is global, i.e. we may take T = Ty = oo. In particular, |u(t)|, decays like t~0=/9/2 gs
t — 0, including ¢ = o, and |Vu(t)|, decays like t=1="/29 qs t — oo, including q = n.

1.3 Proof of Theorem [1.1

In this section, be shall prove Theorem by first providing a complete outline of the proof
by identifying the main key steps. We then fill in the details for each main step in the proof
in the next section.

I. Reformulate (|1.1]) as an integral equation of the form

u:etA

ug + Bu.

Essentially, we obtain the desired well-posedness result of Theorem by proving the
existence and uniqueness of fixed point solutions to this integral equation.

(1) Let €' be the heat semi-group (convolution) operator on R". Since ug € PL"™, then
e'®ug belongs in BC([0,T); PL™).

(2) Let P be the orthogonal projection from L?*(R™) onto H, where
H:=PL*(R") = {ve L*(R") | V-v =0}

More precisely, the following Hodge decomposition holds: each vector field u in
L*(R™) n C*(R™) has a unique orthogonal decomposition:

u=w+ Vp,

with the following properties:
(i) V-w =0,



(i) w and Vp belong in L*(R") n C*(R"),
(ili) (w, Vp)r2 =0,
(iv) for any multi-index 3 of the derivatives D, |3 = 0

| DPull3 = [DPw]3 + [V D pl3.
Thus, P: L?*(R") — PL?*(R") is defined by the projection map
Pu = P(w + Vp) = w.

Observe that the divergence-free condition on w implies that we can recover p from
u by the elliptic equation Ap = V - u. Once p is found, we obtain w from the
relationship w = u — Vp.

One can show the projection operator is bounded in the dense subspace L*(R™) N
LP(R™). By a standard density and continuity argument, we can extend this as a
bounded operator P : LP(R") — PLP(R™) :={ve LP(R") | V-v=0},1 <p < 0.
Alternatively, we can define the projection operator using Riesz transforms,

R;=Dj(=A)"V2 j=1,2,...,n,

where D; = —ia—. For an arbitrary vector field v(x) = (v1(x), va(x), ..., v,(x)),
Lj
we set z(x Z Ryvi)(z) and defined the operator P by
(Pv);(z) = v,(z) — Z 00 — RjRp)v, 7=1,2,...,n.

Sometimes, this is written more concisely as
P=1I1d—- VA 'div=P=Id+ V(-A) div.
Here we give a precise definition of the bilinear operator B.
(a) F(u,v):=P((u-V)v) =PV - (u®v) and F(u) := F(u,u) for u,v e PL.
(b) B(u,v) := — Lte(ts)AF(u(s),v(s)) ds and Bu(t) := B(u,u).

(c) Observe that we must define F(u,v) in the distribution sense, i.e., for any
smooth test function ¢ with compact support,

Pu - Vo), p) = Puvi ) () = — f ) uv;(Pep;) i



(4)

Deriving the integral equation from . Note that since it is assumed the velocity
field w is divergence-free, we have that u = Pu. Thus applying P : LI(R") —
PL(R™) yields

oru — Au = —F(u).

We can reformulate this non-linear, non-homogeneous heat equation into the de-
sired integral equation via Duhamel’s principle.

II. Establish the required estimates and find a suitable function space to set up the fixed
point problem for the Integral equation.

(1)

Basic Estimates for the Heat Semi-group Operator:

(a) [e"Bul, < Cpt=P=/a72 |y, with 1 < p < ¢ < o0,

(b) |Vetrul, < Cpt~IH/P=/a2 |y, with 1 < p < ¢ < .
1 1 1
(©) [E(u,v)]p < Culul,[Vv]s where PR

FEstimate (c) is just the Hélder inequality.

Bilinear Estimates, i.e., estimates on the bilinear operator B.

Let ]13 =2+ g Applying the heat kernel estimates to B yield

t
| Bullq < Cnf (t = )" TR u(s) o[ Vu(s) s ds,

0
t

|VBully < Cnf (t — )" CHHBD2 0 (5) [0 V() s ds.
0

Remark 1.1. Here we assume n/q < a+ 5 <n so that ¢ = p > 1. Moreover, we
must assume a + f —n/q <2 and 1 + a+ B —n/q < 2 in order for the improper
integrals in the Bilinear Estimates to converge.

Identify the appropriate space.
(a) Let
Xy gor = {u |ty e BO([0,T]; PLY), t*~"?2Vu e BC([0,T); PL®)} .
(b) Equip the function space X, 4, with the norm
[ullgy g := K (u,q1, T) + K'(u, g, T),

where
K(u,q1,T) := sup t"" 02 |u(t)],
0<t<T
and
K'(u, g2, T) := sup t'7"22|Vu(t)],,.

o<st<T



I1T.

(4) Estimates on the bilinear operator B.

Given ¢ = n and for any fixed 0 < § < 1,

|Bu — Bv

lgn1 < Cllulnsng + [lnsnrtlu = vlnsnr (1.4)

where C' = C(n,q,d) depends on n,q, and 0, "< 541 <n Wenote that we

establish this contraction estimate using the bilinear estimates on B with g = 1,
and o = 4.

Use the Contraction Mapping Principle to obtain the local existence and uniqueness of
mild solutions to the integral equation

u = du := e®uy + Bu satisfying conditions (T.2))-(L.3).

In proving Kato’s results, we shall only consider two cases: when n < ¢ or when n = ¢
in ((1.2) where we always fix ¢ = n in ((1.3)).

(1) Case: 7 <1.
We set up a fixed point problem.

(a) @ : B(0,1/4C) © Xynr — B(0,1/4C) for T > 0 sufficiently small.

(b) |Pu— Pv|gnr < 3t — v|gnr for all u, ve B(0,1/4C).

(2) Case: ¢ =n.
Similarly as the previous case, however, to show v € BC([0,T); PL™), we set up a
fixed point problem with slight modifications.

(a) Define Q := B(0, R) ¢ BC([0,T]; PL") and €, := B(0,1/8C) ¢ X= ,, 7, and
consider the intersection subspace 2 := )y N 2y equipped with the norm

for a fixed 0 < 0 < 1 and the constant C' = max{C}, Cs} where C; come from
the contraction estimates below.

(b) Show ® maps 2 to itself and Q5 to itself.
(c¢) Contraction estimates: For any u,v € ), we have the following:
e |Bu— Bv|
e |Bu— Bv|
Thus

na, T | 20T

nn < C1 ([ 30z + [0]z207) [u =] z07 < lu -]

207 < Co ([ullz g + [0l 30) |u—v]

%,H,T'

5,7 < i”u - UH%,n,T-

1
[Pu = @v] < Sllu— ]

for all u,v € €.



(d) By the Contraction mapping principle, there exists a unique solution u € €2 to
the integral equation u = ®u.

Remark 1.2. The above estimates on B are a crucial ingredients in the proofs of Theorems
and and illustrates the need to consider intersection of subspaces and connects the
two cases when ¢ > n and ¢ = n. Namely, for the case ¢ = n, we are not able to close the
estimates with respect to the function space X, , . Fortunately, we can close the estimates
in the subspace Xn . thereby circumventing the difficulty by taking the intersection of the
two spaces and applying the fized point argument to the integral equation valued in this new
ntersection space.

Remark 1.3. Although we only consider two cases for the value of q, it is simple to prove
the actual theorem for all given values of q; that is, we can prove the integrability for the
unique strong solution for all indices of ¢ = n. More specifically, we can adopt the same
fized point argument as above but in the space

ﬂ th,qu

q1,9221

Il = D5 - longar

q1,92=2n

equipped with the norm

Here, we allow q; = o0.

1.4 Detailed calculations in the proof of Theorem

Let us first prove the heat kernel estimates I1.(2). Recall that

_le— yP

Ay = Gy+u= 47rt ey f t y t) dy.

Using Young’s inequality, we have

1 1 1
leully = |Gt = ully < [GellsJull, where 1+ PR

r p
1 al? 1/r
< (f o da:) Jul,

1 ) 1/r
—7”|w| n/2
w= :p/\/

Cnf(n/p n/q) /2Hqu_

NN



Similarly, the estimate on Ve!®u follows similarly by first absorbing the derivative onto to
the heat kernel, i.e.,

[Veuly = VG = ully < [VGellul, < Cat™ 2 ull, < GOm0 g,

Now let us prove the Bilinear estimates I1.(2) using the heat kernel estimates. Recall that

1
1_o 8
p non
Then
t
IBuly = [Bul, < | | 2 Fu(s) ds
q
f €92 F(u(s))], ds
< j (t — 5) "0 P(u(s))], ds
0
t
< f (£ — ) B2 oy (5) | V() s .
0
Similarly,

t
|V Bul|, < ‘L Vel =2 P (u(s)) ds ,

rt

< ] [ Ve =2 F (u(s)) |, ds
0

rt

<] - s) e DR | F(u(s))], ds

rt

< | t=e) et 8702 () /o V() [y ds-

Let us now prove (1.4). Recall that f = 1 and o = 0 € (0,1). Using the bilinear
estimates and a change of variables, we compute



t
IBu(t) = Bo()l, < | (6= DR =) Vut v Vo)l ds
<C j D2y — 5| Tl + ol 9 (= v)]a } ds

< CJ (t — §)~(+0=n/0)/25=(1-8/2) =(1-1/2) .
0

X {K(u —v,n/0, T)K'(u,n,T) + K(v,n/0,T)K'(u — v,n,T)} ds
1
< O (#(1 = 5))~UFomma/2(5)=2=9/2¢ 45

— D
X {K(u —v,n/8, T)K'(u,n,T) + K(v,n/6, T)K'(u — v,n,T)}

1
< Ct—(l+5—n/q+2—6—2)/2] (1 . S)—(1+5—n/q)/28—(2—6)/2 ds %
0

X {K(u —v,n/8, T)K'(u,n,T) + K(v,n/0, T)K'(u — v,n, T)}
1
< Ct-(-n/9) /2{J (1 — )~ (+8-n/@)/24=(2-5)/2 ds}x
0
X {K(u —v,n/8, T)K'(u,n, T) + K(v,n/6, T)K'(u —v,n, T)} (1.5)

Similarly,

t

|IVBu(t) — VBu(t)|, < f

(t = 5)" 5 s — s [Tl + [0]nss |V (e = )] | ds
0

t
< C’J (t o S)—(1+5)/2S—(l—é)/28_(1_1/2) ds

X {K(u —v,n/0,T)K'(u,n,T) + K(v,n/0,T)K'(u — v,n, T)}

1

< C’t_l/2{ f (1-— s)_(1+5)/25_(2_5)/2 ds} X
0
X {K(u —v,n/0, T)K'(u,n,T) + K(v,n/0, T)K'(u—v,n,T).
(1.6)
Combining the two estimate ([1.5) and (1.6)) and taking the supremum over ¢ yields the
desired contraction estimates.
Let us now show the existence and uniqueness of a local-in-time fixed point solution to

u = du. Here we shall consider n < ¢ < w0 in and ¢ = n in ([1.3). The other cases for
n and ¢ are treated similarly.

10



Remark 1.4. As in the previous remark, the difficulty that stems from the contraction
estimate is that we must impose the condition o = 6 € (0,1) for the case ¢ = n, i.e., when
1 = n/q. Namely, the estimates do not hold when § = 1 for this case since the improper
integrals in the bilinear estimates diverge (recall we had to assume that 1 + o+ f —n/q =
1+0+1-1<2).

The next result concerns the estimates on the heat kernel acting on the initial data ug €
PL™(R™). These estimates are required for the fized point arqgument, however, we Tequire
a splitting of the initial data into a small part and a smooth compactly supported part. As
L™(R™) is a critical space, however, the scaling invariance is negated by the splitting of the
initial condition and so rescaling cannot be used to obtain global well-posedness. We resolve
this issue and deduce a global existence result but at the expense of restricting ourselves to
sufficiently small initial data.

We digress somewhat to clarify the notion of a critical function space for the incompress-
ible Navier—Stokes equations in R3.

Definition 1.1. A translation or shift invariant Banach space of tempered distributions X
is called a critical space for the Navier—Stokes equations if its norm is invariant under the
action of the scaling f(x) — Af(Ax) for any A > 0. In other words, we require that

X &
and that for any f e X
[f()x =[N (A —x0)|lx for all A > 0, and for all xy € R".

Remark 1.5. Some examples of critical spaces for the three-dimensional Navier—Stokes equa-
tions are the following:

H% (R:S) N L3(R3) N B;1+3/q,oo<R3> R BMOfl(RS) N B(:OLOO(R3>7

where ¢ = 3 and the homogeneous Besov space Bh® (R3) is the largest critical space. Here,
we shall focus on the Lebesque space, L3(R3) in great detail, especially in next chapter.
Generally speaking, the Lebesgue space L™(R™), p = n is a critical space for the Navier—
Stokes equations in R™.

More generally, it turns out that for ¢ and r € [1, ], the homogeneous Besov spaces
B, ""TT(R") are critical spaces for the Navier-Stokes equations in R”, and this follows
from the next result.

Proposition 1.1. Let s € R and q,r € [1,0]. Then there exists a constant C > 0, depending
only on s, such that

Oil)\87’n/q"u“B;l+n/q,r(Rn) < Hu()\ : _.ro)"B;1+n/q,r(Rn) < C)\Sin/qHUHB;1+n/q,T(Rn)

for all we By "4 (RY).

11



Surprisingly, showing that BOEI’OO(RB‘) is the largest critical space is very simple to prove.

Proposition 1.2. The homogeneous Besov space BO_OI’OO(R”) 15 the largest critical space for
the Navier—Stokes equations.

Proof. Let X — S’(R™) be some critical space, i.e., assume that for any (A, zg) € (0,00) x R",
Ju(X - —zo)|x = A7 ulx.

Now, we want to show X — Bx"®(R"). Since X is continuously embedded in S'(R"), we
have that
2
[u, e ] < Ol x-

Then for any x € R™ with xqg = —z and using the substitution y — Ay + x, we obtain

1

) @) dy = f u(Ay — zo)e M dy = Cu(h - —xp), 71T

< Clu(h - —zo)|x = CA™ ulx.
From this, we use dilation with A\ = v/t to get

Ve ul| o rny < Cllul|x for all ¢ > 0,
which implies for ¢ = o0,

0y = [l m gy = 500 Vil vy < Clulx
>

This completes the proof. O

Remark 1.6. In the later chapters, we give a concise overview of the homogeneous Besov
spaces with the help of the Littlewood—Paley decomposition.

We return to the details of the proof of Theorem The following lemma examines the
required step of splitting the initial data. This is precisely the mechanism responsible for
requiring our smallness restriction on wuyg.

Lemma 1.1 (Splitting of initial data). If ¢ > n, then
o [t1—mD2ethq|, — 0 ast —> 0,
o [t12VetPall, — 0 as t — 0.

Proof. To prove these two properties, we split the initial condition using a density argument.
Indeed, for each € > 0, we decompose ug into uy = a; + ag, where a; is an L™ function with

12



small L"-norm, i.e., |lai|, < e and ay is a smooth and compactly supported function. Let
6 = 7 €(0,1) and fix some [ € (4, 1), then the heat kernel estimates imply

Ht(176)/26tA Ht(lfé)/QetA

Uolln/s
Ht(l—é)/QetAal” n/s + ||t (1- 6/2 tA

UOHq =

a2Hn/6
Cr t(l—&)/Zt (n/n—n/(n/s) )/ZHa H + t(l—l+l—6)/2||etA

O + t1-D/24(1=0)/2=(n/(n/)=n/ (/)2

as Hn/6

NN N

|as| n/l

< C’n{e D2 H@Hnﬂ}.

The second property is verified in a similar fashion. O

The previous estimate implies that if our initial datum g is sufficiently small in L"(R"),
then ey will remain small in global time. Now we ready to exploit these smallness prop-
erties in setting up our fixed point argument. In other words, we can now choose T' > 0

sufficiently small so that HemuoHn/g’n,T < 1/8C. For ue B(0,1/4C) Xo/sn,Ts

||(I)an/5nT He uO”n/(S,n,T + HBan/&n,T

L N tion I11.2.
x —— = —— IToIm 101N
’C T ouc T ¢ Momsectio <

So ® maps B(0,1/4C) into itself. Using the contraction estimates,
| Bu = Bvfnjsnr < —Hu Vlln/sin 1,

so by the Contraction mapping principle, there exists a unique u € B(0,1/4C) such that
u = du.

Let 2 = 1. We will show u e BC([0,T]; PL") with the aide of the previous case. First
we define the following subspaces:

e Q) := B(0,R)  BC([0,T]; PL") where R is to be later specified,
[ ] QQ = E(O, 1/40) (@ Xn/é,n,Ta

e Consider the closed subspace () := )y N 5 equipped with the norm

' Hn/(s,n,T-

|-l =1
Hence, € is complete under the induced norm topology.

From the contraction estimates III.2.c, for any u, v € €2,

hd HBu(t) - Bv(t)Hn/é,n,T < () {Han/ﬁ,n,T + HU”n/&n,T} ”u(t) - U(t)Hn/é,n,Ta

13



o |Bu(t) — Bu(t)

n,n,T < 02 {Han/&n,T + ”UHn/é,n,T} Hu(t) - v(t>Hn/5,n,T'

Now set R = sup [e"®ug|, + 1/C with C' = max{C}, Cy}, then

0<t<T

|Pula, < e uollo, + [Bula, < sup [ Pugl +1/16C < R,

<t

and . . .
tA
[Pulq, < e ugla, + |Bula, < 3C +C (1602 + 16C2> < 1/4C.

Thus ® maps 2 into itself and the contraction estimates imply it is a contraction mapping
on ). Hence, the Contraction mapping principle implies the existence and uniqueness of an
element u € €2 such that u = du.

1.5 Proof of Theorem 1.2

Global well-posedness: Observe that the bilinear estimates hold for any time 7' > 0 and
that we can find a suitably small A > 0 such that if |jug], < A, then the bilinear estimates
and the norms of e*®u are independent of T. For instance, let us verify this for the latter
statement. Recall from the heat kernel estimates, we get

e uollas < Ct= 2 ugll,

and
Ve ugl,, < Ct2|ug -

Hence, we may take T' = o0 in the space X, 5,7 and
HetAUOHn/&n,OO < Cllugln

and our fixed point argument applies accordingly. That is, we may find an absolute constant
A such that if |ugl, < A then the contraction mapping principle implies global-in-time
existence and uniqueness of a solution in the usual subspace of C([0,0); L"(R™)). The
remaining asymptotic results follow from Theorem [1.1]

Remark 1.7. The global existence and uniqueness result of Kato presented here holds for
a smaller subspace of BC([0,00); L™(R™)), yet it was not known at that time whether this
solution is unique in BC([0,00; L"(R™)). Indeed, it was proved to be unique in this class
later in [5]. In addition, basic regularity theory implies this unique solution is also smooth
fort >0 (cf. [9] for proofs of these reqularity and uniqueness results).

14



CHAPTER 2

Extension of Kato's theorem for the Navier—Stokes equations in
critical Lebesgue and Besov spaces

In this chapter, we extend Kato’s existence theorems of Chapter 1 by following the work of
Cannone [3]. Namely, we obtain a global well-posedness result for the incompressible Navier—
Stokes equations in the critical space L"(R™) with solenoidal initial data ug € L™(R™) which
are small in the homogeneous Besov space B;_"/ ©*(R™). In particular, the types of initial
data that exhibit these properties include those which are sufficiently oscillating.

For the sake of simplicity, we only consider the three-dimensional incompressible Navier—
Stokes equations:

du— Au+ (u-V)u+ Vp =0, t>0, reR3
V.u=0, (2.1)
u(z,0) = uo(),

We reduce this problem into the mild integral equation:
u(t) = eug + B(u,u), (2.2)

where the bilinear operator is defined as

B(u,v) = — Jt VAPV - (u @) ds. (2.3)

0

We mention that the equivalence between and holds under classical solutions and
even weaker notions of suitable solutions (cf. [9] for further details on the matter). Let
us also mention the familiar idea of showing the existence of fixed point solutions to this
integral equation in the setting of Lebesgue spaces. As stated later in Section [2.1.1] the

15



key idea is to identify the functional space in which to set up the fixed point argument,
however, the bi-continuity of the bilinear operator required in applying Picard’s theorem
breaks down in the critical space C([0,T); PL3(R?)). In fact, in his unpublished doctorial
thesis, F. Oru proved the non-continuity of the bilinear operator not only in this case but also
in C([0,T); LB9(R3)) where ¢ € [1,0) and LE9(R3) is a Lorentz space. It is interesting
that the limiting case where ¢ = oo is completely different, since Y. Meyer in [10] showed that
the bi-continuity holds in C([0,T); L*>*)(R?)). Nevertheless, the issue of continuity in the
class C([0,T); PL3}(R?)) was circumvented in Chapter 1 by carefully choosing an appropriate
auxiliary subspace of the critical space in which the bi-continuity property holds. The results
in this chapter essentially adopts the same ideas but weakens Kato’s original assumptions on
the initial data. On the other hand, the bi-continuity of the bilinear operator holds easily for
the super-critical spaces, C([0,T); LY(R?)) where ¢ > 3. However, as a caveat, this continuity
is only good enough to establish local well-posedness and it remains to be known if global
well-posedness holds. For completeness sake, we state and prove the existence results for
both critical and super-critical spaces below.

To elucidate the differences between Cannone’s theorem with that of Kato’s—at the ex-

pense of repeating ourselves—we state both theorems. We can state a simplified version of
Kato’s Theorem (Theorem [1.1{in Chapter 1) as follows.

Note that from this point on, we set a = a(q) =1 — 3/q.

Theorem 2.1 (Kato). Let g € (3,6] be fized. Then there exists an absolute constant 6 > 0,
such that if ug € L3(R3), |uolz < &, and V -ug = 0 (in the distribution sense), then there
exists a global mild solution of the Navier-Stokes equations in C([0,00); L*(R3)). Moreover,
this solution is the only one such that

u(t,z) € C([0,0); PL*(R?)),
t2u(t, z) e C([0,0); PLY(R?)),

and

: a/2 _
lim ¢ u(®)], = 0.

Theorem 2.2 (Cannone). Let g € (3,6] be fized. Then there exists an absolute constant
0 > 0 such that if ug € L*(R?), uo| g e < 0, and V -ug = 0 (in the distribution sense),
then there exists a global mild solution of the Navier—Stokes equations in C([0,0); PL3(R?)).
Moreover, this solution is the only one such that

u(t, ) € C([0,0); PL*(R?)),
ta/2u(t, r) € C([0,:0); PLY(R?)),

and
tlimo /2 |u(t)|, = 0.
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2.1 Some preliminaries and the main result

In this section, we provide the necessary background for obtaining the main existence theo-
rem, then we prove the main results of this chapter.

2.1.1 Bicontinuous bilinear operators and Picard’s Theorem

Proposition 2.1 (Picard Contraction Principle). Let X be an abstract Banach space with
norm | - |x and B : X x X — X a bilinear operator. Suppose that B : X x X — X is
bicontinuous, i.e., for any x1,x9 € X,

| B(x1,22)|x < nllw]x ]z,
then for any y € X such that 4n|ly|x < 1, the equation
r=y+ B(z,x)

has a solution x € X. In particular, the solution satisfies |z|x < 2|ly|x and is the only one
for which || < 5.

Proof. The proof is quite standard, but we provide it for the reader’s convenience. Set
R :=2|y|x and define the map ®(x) : X — X such that

O(z) =y + B(z,x).
Then

[@@)lx < lylx + Bz, )| xxx < lylx + nllz|x]lx
< ylx +n2lylx)* < lylx + 4nlyl%

< ylx (T +4nlylx) < 2]y|x < R.

——

<1

Thus, this implies that ®(z) maps Br(0) = X, the closed ball of radius R centered at the
origin, to itself. Moreover, for any z; and x5 in Br(0),

|®(21) — @(22)|x < |B(21,71) — B(xa, 22) | x

3(1’1 — T2, 1’1) + B(l’za T — 372)HX

3(1’1 - 332,96’1)“)( + HB(9€2>$1 - «’132)HX
nl@ifxlzr — 22| x + nllzal x|z — 22| x

2Rn  |xg — 2o x
——

INCINCININ N

= dnfy|x
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Thus, ® : B(0) —> Bg(0) is a strict contraction and, by Picard iteration, implies there
exists a unique fixed point x € Bg(0) such that ®(z) = z, i.e., v = y + B(x, z).

Now, suppose that Z € X is another fixed point solution for which |z, ||Z]|x < 1/2n.
Then we have

lz —2|x = [®(z) — ©(2)|x < [B(z,z) — B(z,2)|x
|B(x —Z,z) + B(Z,z — )| x

N

nlzlxle = 2|x + nlZ|x |z — 2]x
n(lz]x + 1zl x)lz = 2] x
<n(1/2n +1/2n)|x — 7| x

< o =2y,

NN

which implies x = . This completes the proof. O

2.1.2 The Littlewood—Paley decomposition

Let us describe the Littlewood-Paley decomposition in R?. We arbitrarily choose a function
¢ in the Schwartz space S(R?) and whose Fourier transform ¢ satisfies

0<@<1, §e) = 1if |¢| <3/4, 3(&) =0 if |¢] > 3/2,
and let
() = 8p(22) — p(x),

pj(z) = 29p(2x), j € Z,

bj(z) = 279 (2'2), j e Z.
Denote by S; and Aj, respectively, the convolution operators with ¢; and ;. The set
{S;j, A,}jez is the Littlewood-Paley decomposition for which

I=S5y+) A (2.4)
j=0

Note that this decomposition does not depend on the choice of . Moreover, for any given
tempered distribution f € S'(R?),

f=lim Sof + > Af. (2.5)
j=0
In particular, the identity,
f = Z Ajf7
JEZ

is to be understood modulo polynomials, i.e., f € S'(R3)\P.
Let us describe this decomposition in a more precise manner. We start with the following
theorem.
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Theorem 2.3. For all N € Z and all f € S'(R3), we have
f=Snf+ ) AifeS(RY).
j=N
This equality is called the Littlewood—Paley decomposition of the distribution f. If, moreover,
limy_, o Snf =0 in S'(R®), then the equality
=200
JEL
1s called the homogeneous Littlewood—Paley decomposition of f.
Definition 2.1. We define the space of tempered distributions vanishing at infinity as the
space Sy(R?) of distributions so that limy_,_o, Sy f = 0 in S'(R3).
For more general tempered distributions, we cannot recover them from their homogeneous

Littlewood—Paley decomposition but modulo polynomials:

Lemma 2.1. For all f € S'(R3?), there is an integer N and a sequence of polynomials { P;} jez
of degree < N so that

DA+ P

JEZ
converges to f in S'(R3). Hence, the equality,

f=2A

JEZ

holds in S/(Rg)/C[Xl, XQ, ce 7Xd:3].
Remark 2.1. We can see that S)(R3) = S'(R®*)\P. The interest in decomposing a tempered
distribution into a sum of dyadic blocks A;f, whose support in Fourier space is localized
in a corona, comes from the favorable behavior of these blocks with respect to differential
operations. This can be illustrated by the celebrated Bernstein’s Lemma in R3.

Lemma 2.2 (Bernstein). Let 1 < p < ¢ < and k € N, then

sup |D*fllp =~ RE| £,

and
1714 5 BG4 ],
whenever f € 8'(R3) whose Fourier transform f(€) is supported in the corona |¢| ~ R.
In case the function has support in a ball (e.g. S;f), then the following version holds.

Lemma 2.3. Let 1 <p<qg< o and ke N, then

sup |D°fllp =~ RE| £,

and .
1£ls < B*G2|f1,,
whenever f € 8'(R®) whose Fourier transform f(€) is supported in the ball |€| < R.
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2.1.3 The Besov spaces B;a’oo(R?’)

Here, we shall provide a brief characterization of homogeneous Besov spaces via Littlewood-
Paley theory. There is a natural motivation for examining well-posedness for the Navier—
Stokes equations in the homogeneous Besov spaces, since these function spaces are appro-
priate for scale invariant equations.

Definition 2.2. Let g be fized in 1 < g < o0 and o € R. A tempered distribution f € SH(R?)
belongs in the Besov space Bq_a’oo(R3) if

[ Flgme = sup2 7 A; £,
JEZ

1s finite. The following lemma provides an equivalent characterization of the Besov space

B/** (R3) in terms of the heat semi-group. This is useful since our estimates below involves

the heat semi-group.

Lemma 2.4. Let q be fixed in 1 < q < o and o > 0. For any tempered distribution
[ € S)(R3), the following norms,

(a) sup277%A; £,
JEZ

(b) sup 277 S; fllq;
JEL

(c) supt*/e2 £,

t=0

(d) sup " f]
>0
are equivalent.

The next lemma is on the embedding properties between L3(R?) and these Besov spaces.

Lemma 2.5. Let ¢; and gy be two fized constants in 3 < ¢; < go < 0, and set oy = 1—3/¢
and ay = 1 —3/qs. Then

L*(R®) — B, *"*(R®) — B_**(R®).
Proof. From the Bernstein’s inequalities, we deduce that
277 Aj fllgy < 277 fllar S 18, fla < [1f]5-
The desired result follows immediately. O]

We point out that the following chain of continuous embeddings are strict. For instance,
the function |z|~! belongs in By *®(R?), however, |z|~" ¢ L*(R?).
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2.1.4 The proof of Theorem

Let X = G be the Banach space of functions v(t, z) satisfying

v(t,z) e C([0,0); PL}(R?)), (2.6)
£2/20(t, z) € C([0, %); PLY(R?)), (2.7)
and
tlimo ta/2Hv(t)Hq = 0. (2.8)
equipped with the norm
[v]l == sup [0(8)] g, e + sup 2 [u(t)]q- (2.9)
t>0 t>0

Now, let us state and prove some important lemmas that will play significant roles in the
proof of the main theorem.

Lemma 2.6. If ug € PL3(R®), then e'®ugy € G.

Proof. We will prove that e'“u, satisfies f. First, it is clear that the heat semi-
group operator uy — e"®ug preserves the divergence-free condition. Secondly, recall from
Lemma H that the norm of e®uy in G is equivalent to Bq_ @®(R3) norm of uy and that
L¥(R?) — B, **(R?), ie.,

Juol| goe < [l

uolla < Juoll gy < fluols.
Hence, e'®ugy € C([0, 00); PL3(R?)). Moreover, the heat kernel estimates of Chapter 1 imply

[t ug| g < 22 BB g5 = 2 ug)s = [uols.

Thus,
sup [[t*2e" ug 4 < [uolls,
t>0

which implies t*/2¢“uy € C([0,00); PL?*(R?)). Similarly, from the heat kernel estimates and
since the heat semi-group e'® is strongly continuous in LP(R") where 1 < p < o0, we have

2P g, < t% e ugl, — 0 as t — 0.

Remark 2.2. The equivalence in norm, or more specifically, the estimate

e ol < uol o0
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plays a very important role in obtaining the global well-posedness of solutions. More precisely,
this implies that if we choose a sufficiently small initial data in Bq_a’w(R?’), then |e®ugl|q
also remains sufficiently small and Picard’s theorem yields global solutions. In Kato’s proof
presented in Chapter 1, we applied a splitting procedure on uy € L*(R3) to apply Picard’s
theorem. Consequently, we obtained global mild solutions provided we had sufficiently small
initial data in L3(R®), instead.

Lemma 2.7. The bilinear operator B(u,v)(t) defined by

B(u,v)(t) := — Lt TIAPY - (u®v)(s) ds, (2.10)

18 bicontinuous in G x G — (.

Proof. For the sake of simplicity, we shall prove the bicontinuity of the bilinear operator
B(u,v)(t) in the scalar case, which can be expressed as

B0 = - [ 0 (=) - Gae)ds

where f = f(t,z) and g = g(t, ) are scalar fields in G and © = O(z) has Fourier transform

given by

O = [¢leF,
and as such, is an analytic function which is O(]z|™*) at infinity. In other words, we are
treating e'“PV - (u ® v) as a single convolution operator unlike what was done in Chapter
1. By Young’s inequality (here, the condition ¢ < 6 appears) followed by the substitution
x/+/t — s —> x in order to compute [O],, we obtain

a0k < [ le (=)
(] (1= 52 F()g(5) s i) el

0
where 1 + % = % + 712. Then, Holder’s inequality implies

. [f(s)g(s) Hq/2 ds

t
|B(f,9))]s < (J (t —s)72r¥rsme ds) |©1 sup 2| f(t) ], sup ™2 |g(t)]],
0 t>0 t>0

< supt| f(1)]y - supt*?[g(t)], (2.11)
t>0 t>0

Similarly, Young’s inequality implies

1B(f;9))lq < (L (t =) 2 £(5)g(5) | g2 dS) [©]]r,
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where 1 + % + % + %. By Holder’s inequality, we obtain

t
(a0l < ([ (-0 s ) [Blaswpe 10, - supr g0,
0 t>0 t>0

t
| e §>2+3/<%>tas“td§) |©lrs sup 2 £ (), - supt*g(),
t>0 t>0

<
~—— 0

S§=s/t
ST HERT sup 02| (1), - sup g (t)]
>0 t>0
<2 sup 2| £(1)], - supt2g()],,
>0 t>0
where we used the fact that —1 + 3/(2ry) = /2. This implies

t2|B(f,9)(t)]q < supt*?|f(t)]g - supt*|g(t)] - (2.12)
t>0 t>0

Hence, the estimates and , in general, imply that
|B(u,v)(t)|c < [ulclvle for any u,veG.
Now, the the bilinear estimates can be easily applied to show that
Tim 2| B(f.9)(0)], = 0.

whenever
Tim 21 £(0)l, = Jim 29 0)], = 0.

Furthermore, we can also show that if the latter conditions hold, then
lim |B(£.9)(0)]s = 0.

In particular, this convergence property is an important ingredient in our proof of the main
theorem since it guarantees any solution wu(t,z) € G of the integral equation (2.2)) with
solenoidal initial data ug € L*(R?) is unique in G and tends to g in the strong topology of
L3(R?). O
Proof of Theorem [2.2. The theorem follows directly from Proposition [2.1] and the previ-

ous lemmas. n

2.1.5 Proof of the local existence theorem in super-critical space

For completeness sake, we establish the bilinear estimates for the critical space C'([0, c0); L¢(R?)),
q > 3. Hence, the existence and uniqueness of mild solutions follow from Proposition [2.1
without resorting to any auxiliary subspace as in the critical case. We show the bicontinuity
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of the bilinear operator B : X x X — X where X = C([0,0); L(R?)). As before, we
establish the bilinear estimates by considering the scalar case of the bilinear operator. By
Young'’s inequality followed by the substitution z/y/t — s — x, we obtain

B0l < [ le (=) | 1reslads

(| t(t I F(5)g(3)] ds) el

0

where 1 + % = % + ﬁ, ie., % + % = 1. Then, Holder’s inequality implies

B0 < ([ @699 as) [l sup 1701, - sup oo,

0
“
t
[ = msenas) s ol s latol,
t>0 t>0

()

< sup [f(?)]q - sup |g(@)]q, (2.13)
t>0 t>0

t
| (e sy ds> &1 sup | £ ()l - sup l9(®)l
t>0 t>0

0

A

where the integral in the estimate converges since % + 23—q < 1 whenever ¢ > 3. Hence, we
have shown the following.

Lemma 2.8. Let 3 < q < @ be fizred. For any T > 0 and any functions f(t),g(t) €
C([0,T); LY(R3)), then the bzlmear term B(f, g)(t) also belongs to C([0,T); L3(R?)) and we

have
T(1-3/q)/2

sup [ B(f,9)(t)]q < sup [[f(t)lq sup [g(t)]g-

0<t<T - 3/(] 0<t<T 0<t<T

As a consequence, we obtain the following existence result.

Theorem 2.4. Let 3 < q < o be fized. For any ug € PLI(R?), there exists a T = T'(||uol|,)
such that the Navier—Stokes equations has a unique solution in C([0,T); PLY(R?)).

Remark 2.3. It is still an open question whether the solution in the super-critical setting
are global and the non-invariance of the LY norm for q # 3 ensures that such a global result
would not depend on the size of the initial data, |uo,-

Remark 2.4. Notice that the local well-posedness for the Navier—Stokes equations still holds
for the super-critical case when q = o0; however, some modifications are needed since L™ (R3)

is not separable and therefore the heat semi-group is not strongly continuous as t — 0. (cf.
Section 3.3 in [4] for further details).
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2.2 The Cannone—Meyer—Planchon Theorem

This section states and proves the Cannone-Meyer-Planchon Theorem, which is a global
well-posedness result for the Navier—Stokes equations and is closely related to the previous

well-posedness results of T. Kato and M. Cannone. This theorem, however, achieves global
1+3/q,00 (Rg)

well-posedness for small initial data in the typical scale invariant space By but, in-
stead, the fixed point argument is formulated in an auxiliary subspace of L?([0, c0); B L+s/ T(R3)).
Thus, it suffices to verify the continuity of the bilinear terms under this setting, and this
argument relies on ideas from Littlewood—Paley theory and the smoothing effect of the heat
kernel.

First we recall an important property from [I], which describes the action of the semigroup
of the heat flow on distributions with Fourier transforms supported on an annulus.

Lemma 2.9 (Lemma 2.4 in [1]). Let C be an annulus. Then there exist positive constants
¢ and C such that for any q € [1,0] and any couple (t, \) of positive real numbers, we have
that

if supp @< AC then, |e®ulLe < Ce " |ul|Lq.

From this, we have that |A;e"®ug| e < Ce | Ajug|La. Integrating this in time yields

. c .
HAj@tAUOHLl(Lq) < 27]2 J(=1+3/q) HUOHB(I—lJrB/q,oc . (214)
This observation leads to the following definition.

Definition 2.3. For1 < ¢ < o, we denote by E, the space of functions u in L*([0, 0); Bq_HS/q’OO(R"))
for which

HuHEq — Sup 2j(—1+3/‘1) HAJUHLOO(LLJ) + Sup 22j2j(—1+3/‘I) HAjuHLl(Lp) < 0.
J J
Note that estimate (2.14]) implies that ||e’ Augl g, < OHUO||Bq—1+3/q,oc.
We have the following main result.

Theorem 2.5. Let q € [1,00). There exists a constant § such that the integral equation (2.2)
has a unique solution u in Bys(0) = E, whenever |ug| p-1+3/00 < 6.
q

This follows from the standard fixed point argument provided we have the following
bilinear estimate on E,,.

Lemma 2.10. There exists a constant C' such that for any q € [1,0),
| B(u, )|k, < C - qlulg,|v]g,
Here B(u,v) denotes the usual bilinear operator from the Navier—Stokes equations.

Proof of Lemma[2.10. We omit the proof but refer the reader to Chapter 5 page 234 in
[1]. O

25



CHAPTER 3

On the breakdown of smooth solutions for the 3-D incompressible
Euler equations

3.1 Introduction

This chapter provides notes from Beale, Kato, and Majda’s [2] result on the finite-time
blowup of smooth solutions to the incompressible Euler equations in R? (an analogous result
does hold for the incompressible Navier-Stokes equations). We shall consider the initial
value problem to the three dimensional incompressible Euler equations

_ _ 3
{@u%—(u Vu+Vp=0, t>0,zeR’ (3.1)

V-u=0.

It turns out that a necessary condition for the finite-time blowup of classical solutions of
is directly related to the time integral of the supremum norm of the vorticity, w := V x w.
Namely, if a solution of the Euler equations is initially “smooth” and loses its regularity at
some later time, then the supremum of the vorticity necessarily grows without bound as time
approaches a critical value T,. An equivalent reformulation of this statement is that if the
vorticity remains bounded, then a smooth solution persists.

3.2 Main Results
Theorem 3.1. Let u be a solution of the Euler equations (3.1)) and

we C([0,T]; H®) n C([0,T]; H*™ ). (3.2)
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Suppose that there is a time T, such that the solution cannot be continued in the class (3.2)
toT =T, and assume Ty is the first such time. Then

| ool dt = 53)

0

and in particular,
lim sup |jw(t)| = = .
t—T,

An immediate consequence of this theorem is the following result.

Corollary 3.1. For some solution of the Euler equations (3.1)), suppose there are constants
My and Ty so that on any interval [0, T of existence of the solution in the class (3.2)), with
T < T, the vorticity satisfies the a priori estimate

[ 1ettle e < 3, (3.0

Then the solution can be continued in the class (3.2)) to the interval [0, Ty].

Proof of Theorem[3.1. First, we show that the assumptions imply that

lim sup ||u(t)]| gs = 0. (3.5)

t—Ty
To see this, assume the contrary. That is, |u(t)||gs < Cp for some positive constant Cp and
all t < T,. By the local well-posedness, we can start a solution at any time ¢; with initial
value u(t;), and this solution will be regular for ¢; <t < ¢; + To(Cy), with Ty independent
of t1. If t; > T, — Ty, then we have extended the original solution past the time T}, which
contradicts our choice for T,.
To prove the theorem, we claim that if

T
J () dt = My < o0, (3.6)
0

then

u(®)]
for some positive constant Cy, thus contradicting .
Step 1: We estimate w(t) in L?. Taking the curl in leads to the vorticity equation

wr+u-Vu=w-Vu. (3.7)
Recall the important property that

(u-V)w,w) =0 at least for we H',
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which follows from integration by parts and the divergence-free condition on the velocity wu.
Thus, if we multiply (3.7) by w and integrate, we get

L o ®))2: = (- Vu,w). (3.8)
The velocity u is determined from the vorticity w by the relation
u=-V x (V1'w).

Therefore, the Fourier transforms of Vu and w satisfy @(f ) = S(§)w(§) where S is a matrix
bounded independent of £&. Thus, we have

[Vulze < Clw|L..

By inserting this into (3.8) and using the Cauchy—Schwarz inequality, we arrive at

Co(t) 3 < 20m@) (1) 3 (3.9)

where m(t) = |w(t)| =, so that

0z < )]z exp { [ mir)ar,

or
Jw(®)lz2 < My]w(0)] 2 (3.10)
with M; = exp(C'M,).

Step 2: Next, we derive energy estimates for (3.1]) in terms of |Vul[z«.
Let o be a multi-index with |a| < s. Set v = D%u. By applying the usual differential
operator D% to (3.1)), we obtain for v the equation

v +u-Vo+Vg=—F, (3.11)

where ¢ = D%p and
F =D%u-Vu)—u-VD%.

We estimate F' by recalling the well-known elementary inequality
|D*(fg) — fD%g|r2 < C (| f|

by taking f = u and g = Vu so that

welglle + [V f]zolglas)

Hs

|D%(w-Vu) = u- D*Vul 2 < C(|ul

VUHLOC + HVUHLwHVUHHs—l) .

From this, we have that
|F 2 < CIVulpe]ul .
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Applying standard methods in obtaining energy estimates for (3.11)) yields

1d

5 7Ol < CIVulpe ulz.,

which yields

[u®)]

#e < [u(0)]

t
Hs €Xp {C’J |Vu(T)| L= dT}. (3.12)
0
Step 3: We complete the proof by invoking the following time-independent estimate for
|Vu|r» in terms of bounds on w and slight dependence on a higher norm of u,
[Vule < C{1+ (14 log* Julp)|wlie + Jwlze . (3.13)

where log™ a = loga if a = 1 and log™ a = 0 otherwise. By virtue of (3.6) and (3.10), we
can express inequality (3.13)) as

vamn<0bﬂwMﬂbth«+@} (3.14)

Here and below, C' denotes a positive constant depending on My and 7.

Set y(t) = |u(t)| g + e. By combining (3.12) and (3.14]), we obtain

t

y(t) < y(0)exp {CJ

J1+mﬁn%yw»m}

and if z(t) = logy(t),

t

4@<4®+cf@+mvpu»m.

0

Hence, by Gronwall’s inequality, z(¢) is bounded by a constant depending on My, T}, and
|wo| grs. This completes the proof of the theorem. O
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CHAPTER 4

Littlewood—Paley theory and the Besov and Triebel-Lizorkin spaces

In this Chapter, we introduce the Littlewood-Paley decomposition, the paradifferential cal-
culus and related topics. We use these tools for defining and characterizing the Besov and
Triebel-Lizorkin spaces. For more detailed accounts of the theory presented in this chapter,
the reader is referred to [I], 6, [7, [9].

4.1 Littlewood—Paley theory

4.1.1 Bernstein-type Lemmas

Lemma 4.1. Let C be an annulus and B a ball. A constant C' such that for any non-negative
integer k, any p,q € [1,00] with ¢ = p, and any function u € LP(R™), we have
If supp it = AB, then |D*u|p. = sup [0%u|p. < C’k+1/\k+"(%_%)||u\|m,
la|=k

If supp it < AC, then C™F+HDNF|u| < | DFulpe < CFFINF |10,

Lemma 4.2. Let C be an annulus, m € R, and k = 2[1 + n/2[[| Let o be a k-times differen-
tiable function on R™\{0} such that for any o € N* with |a| < k, there exists a constant C,
such that
for all € e R™, |0%a ()] < Cule[™ 1o,
Moreover, there exists a constant C, depending only on the constants C,, such that for any
p € [1,00] and any X > 0, we have, for any function w € LP with Fourier transform supported
mn \C,
lo(D)ulr < CX™ u] 1,

1[i] denotes the integer part of i.
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where we define

o(D)u = F~1(o0).

4.1.2 Dyadic partition of unity

Proposition 4.1. Let C be the annulus {{ € R™|3/4 < [¢| < 8/3}. There exist radial
functions X and @, valued in the interval [0, 1], belonging respectively to D(By/3(0)) and
D(C), and such that

for all £ R”, R(&) + >, 4(279¢) = 1, (4.1)
320
for all £ e R™{0}, Y 3(27¢) =1, (4.2)
Jj=0
if |j— 7| =2, then supp $(277-) n supp $(277) = &, (4.3)
if 7 =1, then supp x N supp @(Q’j-) =, (4.4)

the set C = Baj3(0) + C is an annulus, and we have
if |j—7'| =5, then 2°Cn2C = . (4.5)

Proof. Fix a to be in (1,4/3) and denote by C' = {£¢ e R" |a™! < |[¢| < 2a} < C. Choose a
smooth radial function 6 valued in [0, 1], supported in C, and # = 1 in a neighborhood of C'.
The important point is the following: for any couple (j, j'), we have

j—Jj|=2—2"'Cn2C=g. (4.6)
Clearly, if 2/°C 1 27C # & and j' > j, then 2 x 3/4 < 4 x 27*'/3, which implies that

j —j < 1. Now, let
§) = 2,0(27%).
JEL
Thanks to (4.6]), this sum is locally finite on the set R™\{0}. Thus, the function S is smooth
on R™\{0}. As a > 1, we have

| J2c’ = r™\{o}.

JEL
Since the function 6 is non-negative and has value 1 near C’, it follows from the above covering
property that the function S is positive. We claim that ¢ = /S is suitable. Indeed, it is

clear that ¢ belongs to D(C) and that the function 1 — 3., $(277-) is smooth by ((.6).
Moreover, as supp ¢ < C, we have that for || = 4/3, then

D e(RE) =1, (4.7)

j=0
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Thus, by setting
RE) =1->827),

j=0

we obtain the identities (4.1)) and (4.3). Identity (4.4]) is an immediate consequence of (|4.6))

and (4.7)). i
We now prove (4.5)). By definition, the annulus C = {¢ € R"|3/4—2/3 < [£]| < 8/3+2/3},
i.e., it has center 0, small radius 1/12, and large radius 10/3. Then, it turns out that

KCAVC+ @ =3/4x2 <28 x10/3 or 1/12 x 28 < 27 x 8/3
from which the identity (4.5)) follows. This completes the proof. n

From this point on, we fix two function y and ¢ whose Fourier transforms Y and @
satisfy the properties of the previous proposition. We now define the homogeneous and
non-homogeneous dyadic blocks and the low frequency cut-off operators.

Definition 4.1. The non-homogeneous dydadic blocks A; are defined by

Aju=0if j<-2, Aju=X(D)u= J x( —y)uly) dy,

n

and
Bju=p 7Dy = [ 2o~ g)ulw)dy i 5 >0

n

The non-homogeneous low frequency cut-off operators S; are defined by

Sju= > Ajyu.

J'<j—1

Definition 4.2. The homogeneous dyadic blocks Aj and the homogeneous low frequency
cut-off operators are define for all j € Z byE|

A, = 32 Dyu = j 27" o(2 ( — y))uly) dy.

n

Sju =Ry = | 22w~ y)uly) dy.
Remark 4.1. Observe that the dyadic blocks and low frequency cut-off operators are bounded
maps from LP into itself, and we will frequently make use of this property throughout this
chapter.

ZRecall that o(D)u = F~1(oq).
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Obviously, we can write, at least formally, the Littlewood-Paley decompositions:

Id=Y'A; and Id =Y A;. (4.8)
J J
In the non-homogeneous case, the above decomposition makes sense in &’'(R").

Proposition 4.2. Let u be in S'(R™). Then,

uw= lim Sju in S'(R").

J—>®©

Proof. Note that (u — Sju, f) = (u, f — 5;f) for all f e S(R") and u € S’'(R™). Therefore,
it suffices to prove that f = lim; ., S;f for all f € S(R"). Because the Fourier transform
is an automorphism of S(R"), we can alternatively prove that x(277-) f converges to f in
S(R™), which follows easily. O

Another somewhat related result of convergence is the following.

Proposition 4.3. Let (uj)jen be a sequence of bounded functions such that the Fourier

transform of u; is supported in 2'C, where C is a given annulus. Assume that, for some
integer N, the sequence (279N ||u;| =) en is bounded. The series 2. uj then converges in

S'(R™).
Proof. Tt turns out that for all integers j and k we may write

uj; =279k Z 200 (27+) % 0%uj.

la|=k

For any test function ¢ in S(R™), we then write

<Uj’ ¢> = 27" Z <uj7 2jn\g/a(2j’) * (_a)a¢>

laf=k

with g, (x) = go(—2). We then have

[Cuy, dp] < C279% 3 20N 0% .

laf=k

Choose k > N, then > (u;, ¢) is a convergent series, the sum of which is less than C'[¢[ s
for some integer M. Thus, the forumla

<U, ¢> = jh—1>noo 2 <uj’7 ¢>

J'si

defines a tempered distribution. O
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Proving the homogeneous Littlewood—Paley decomposition is more subtle. As discussed
in the previous chapter, the decomposition does not hold for non-zero polynomials, however,
it is true in SG(R™). Indeed, S;u tends uniformly to 0 as j — —oo.

Proposition 4.4. Let (uj)]ez be a sequence of bounded functions such that the support of
u; is included in 2IC, where C is a gwen annulus. Assume that, for some integer N, the
sequence (279N |w;|| =) jen is bounded and that the series 2.0 Ui converges in L*. The series
Yjez Uy then converges to some u in S'(R") and u belongs in Sg(R").

Proof. By virtue of Proposition (4.3), the series )] jez Uj converges to some u in S'(R™). We
are therefore left with prove that u belongs to Sj(R™). We have, for some integer Ny,

ISile < |85 3w <o X owl
§'<j+No §'<j+No
As the series )| <0 Uj converges in L*, the proposition is proved. O]

4.2 Homogeneous Besov spaces

We start with a brief introduction to the homogeneous Besov spaces (including the related
homogeneous Triebel-Lizorkin spaces) by defining such spaces and covering some of their
most fundamental properties.

4.2.1 Introduction

Definition 4.3. Let s € R and p,r € [1,0]. The homogeneous Besov space B;’T(R”) consists
of those distributions u in S{(R™) such that

lw£<2@”&umﬂ <.

JEZ

]

Similarly, we can define the homogeneous Triebel-Lizorkin spaces.

Deﬁnition 4.4. Let s € R and p,r € [1,0]. The homogeneous Triebel-Lizorkin space
EST(R™) consists of those distributions u in Sy(R™) such that

By = ‘ ( (QSj!AjUIY)
JEZ

Proposition 4.5. The spaces B;”(R”) and F;”’(R”) endowed with | - |gsr and | - | psr,
respectively, are normed spaces.

|l < 0.

Lp
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Proof. We only prove this for the homogeneous Besov spaces since the same argument works
for the homogeneous Triebel-Lizorkin spaces. Now, it is not too difficult to check that | - | BT
By = 0. This implies that the

support of @ is included in {0}. Thus, for any j € Z, we have Sju = u, but since u belongs

is a semi-norm. So, assume for some u in S;(R™), we have |u|

in S)(R™), we have u = 0. This completes the proof. O

Remark 4.2. The definitions of the Besov space B;”’(R”) and the Triebel-Lizorkin space

F;’T(R”) are independent of the test function ¢ used for defining the dyadic blocks A;, and
changing the function ¢ yields an equivalent norm. Namely, if ¢ is another dyadic partition
of unity, then an integer Ny exists such that |j — j'| = Ny implies that supp $(279) N
supp p(277-) = . Thus,

29g2 Dyuls = 27| Y B27D)Asu

l7—J3'|<No

Lp

< C2™k Z Xt-Nool (7 — )27 | Ajru] o
j/

Then, the result follows from Young’s inequality.

As we have seen in our study of the Navier—Stokes equations in scale invariant function
spaces, the homogeneous Besov and Triebel-Lizorkin spaces have nice scaling properties,
which make them ideal spaces for examining global well-posedness for the Navier—Stokes
equations. Indeed, if u is a tempered distribution and we consider the tempered distribution
uy where uy = u(2V:), we get the following proposition.

Proposition 4.6. Consider an integer N and a distribution u € Sj(R") and set uy = u(2V").
Then ||ul g i finite if and only if ||uy| gor i finite. Moreover, we have

sy = 2V

un] B

Remark 4.3. As we have seen already, this proposition can be easily generalized to the
following: there exists a C' > 0, depending only on s, such that for all A > 0, we have

C—l)\s—n/pHu|

s < Ju(n)]

Byr < OXN TP o

Proof of Proposition (4.6). By definition of Aj and by the change of variable z = 2Ny, we
get

Bjux(e) = 2" | o2 = )u(zVy)dy

n

= 2—N)n g0(2j_N(2Nx —2))u(z)dz
Rn

= (Ayoyu)(2").
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It turns out that |Ajuy|z> = 277 |A;_yullL». We therefore conclude from this that
29| Ajunpe = 2V 22UV A; vl 1o,
and the proposition follows immediately by summation. O]
The following is an analogue to the Sobolev embedding theorem.

Proposition 4.7. Let 1 < p; < ps < 0 and 1 < ry < ry < 0. Then, for any real number
(5 n
(R™).

. ) ) ) s—n(L—L)r
s, the space By (R") is continuously embedded in By, " " ’

Proof. From the Bernstein inequalities in Lemma 4.1},
. . 1 1 .
1A jul s < C2™ 55 | A jul| o

The proposition follows from this and the fact that {"™(Z) is continuously embedded in
(7). O

An interesting feature of homogeneous Besov spaces, in comparison with the Lebesgue
and Sobolev spaces, is that they contain homogeneous functions of negative degree. For
example, an earlier example showed the function |z|™!, which is a homogeneous function of
degree —1, belongs in B, """7*(R") but does not belong in L"(R"™). In fact, we have the
more general assertion.

Proposition 4.8. Let 0 € (0,n). For any p € [1,00], the function | - |~ belongs to
B (R,
Proof. Using Proposition it enough to prove that p, = | - |~ belongs to B}~ 7 (R").

To do so, we introduce a smooth compactly supported function x which identically equal to
one near the unit ball and we write

Po = po + p1 with po(z) = x(x)|z|™7 and pi(x) = (1 — x(x))]z| 7.

It is clear that pg € L'(R") and p; € L9(R"™) whenever ¢ > n/o. This implies that p, belongs
to S{(R™). The homogeneity of the function p, then yields

Njpy = 2"y p(20) = 20 p (27) 5 p(27:) = 207 (Agp,) (27-).

Therefore, 1A psllr = 27| Agpy] L1, which reduces the problem to proving that the
function Agp, is in LY (R™). As po is in L}(R™), Agpp is also in L*(R™) due to the continuity
of the operator Ay on Lebesgue spaces. Using Lemma , we get

[Aop]lzr < Gk D*Aopi]l s < Ci| D p .

By Leibniz’s formula, D*p; — (1 — x)D¥p, is a smooth compactly supported function. Then,
choosing k so that £ > n — ¢ completes the proof of the proposition. O
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Proposition 4.9. A constant exists which satisfies the following properties. If s1 and sy are
real numbers such that s; < sy and 0 € (0,1), then we have, for any p,r € [1,0] and any
u e SH(R™),

(i)
1-6
B;Q’T’

||U||3381+(1—9>SQ,T < Hu|%;1,r||u|

(i1)
1-6
B

%;1*°°||U|

C 1 1
il gt < = (4 125 ) I

Proof. To prove (i), we note that
" ; . . o . 1-0
OO OD A = (299l ) (2| Asulir)

The result follows from Holder’s inequality.
To prove (ii), we estimate the low and high frequencies of u is a different way. Namely,
we write

HUHBgsl+(1—6)932,1 = Z 2j(951+(1_9)52)||A]"LL”Lp + Z 2j(681+(1_e)82)||AjU||Lp‘
J<N >N

By definition of the homogeneous Besov norms, we have

2j(951+(1_9)52)||Aju||Lp < 2j(1_9)(52_81)HUHBSWO’
P

and
2j(asl+(179)32)HAjuHLp < 273'(1—9)(32751)‘@‘

559,00
By

Thus, we conclude that

g D, P00

] gosava-0r22 < g 3 279002
ya

J<N j>N
2N(1—0)(52—51) 2—N0(52—51)
< HUHBZS}’90 9(1—0)(s2—s1) _ | + HUHBZS,Q"D 1 — 9 0(s2-s1)"
From this, if we choose IN such that
il _ nesmny  graen 152
Jull gz Jull g1
we obtain inequality in (ii). O

The next lemma provides a useful criterion for determining whether the sum of a series
belongs to a homogeneous Besov space.
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Lemma 4.3. Let C' be an annulus and (u;);ez be a sequence of functions such that

< Q0.

Ir

supp U; < 29C" and H(2Sj|\uj||Lp)jeZ

If the series Y., u; converges in S'(R™) to some u in Sy(R™), then u is in B;’T(]R") and

sy < OO @7 sl

1l

r

Remark 4.4. The above convergence assumption concerns (u;)j<o. We note that if s,p and

r satisfy the condition
n n
s<—, ors=— and r=1, (4.9)

then, by virtue of the Bernstein inequalities (cf. Lemma , we have

: L - : 0 (TN
jinilooZu] 0 in L(R").

J'<j

Hence, 3, u; converges to some u in S'(R"), and Sju —> 0 as j —> —oo. In particular,
u belongs to S'(R™).

Proof of Lemma[{.53 It is clear that there exists some non-zero integer Ny such that A u; =
0 for [j" — j| = Ny. Thus,

Bl = Y Ayuy| <€ Y sl

li—3'|<No li—=3'|<No

Therefore, we obtain that

27| Al <C >0 29y 1e

l7—3'I<No
We deduce from this that

2SjHAjuHLP < ((Ck) * (dl)> ) with Cr = CX[—No,No](k> and dl = 2SZHUZHLP.
J

Then, by Young’s inequality (cf. Lemma 1.4 page 5 in [I]), we obtain

HUHBS,’F < C (ZSJHUJHLP)]GZ
p

I
As u belongs to S)(R™), this proves the lemma. O

The previous lemma allows us to establish the following important topological properties
of homogeneous Besov spaces.
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Theorem 4.1. Let s1,85 € R and py,p2, 71,72 € [1,00]|. Assume that s1,p1 and ri satisfy
(4.9). The space _ .

By (R™) n B2 (R™)
N

endowed with the norm | -| B2 is then complete and satisfies the Fatou property:

If (u;)ien is a bounded sequence in BE’” (R™) n B;g“ (R™), then there exist an element u €
Bsv(R™) N B2 (R™) and a subsequence wy;y such that
(1) lim; o0 Uy = u in S'(R™);

Sk Tk .

(ii) fork =1,2, Ju

Proof. We first prove the Fatou property. By the Bernstein inequalities, for any j € 7Z, the
sequence (A;uy, )nen is bounded in L™nP1r2} (R™) A L2 (R™). By Cantor’s diagonal argument,
we can extract a subsequence (uy(;))nen and a sequence (@;)jez of C* functions with Fourier
transform supported in 2/C such that, for any j € Z, ¢ € S, and k = 1, 2,

im <A Uiy, @) = (itg, ¢y and [ o < liirg)igolfHAjuiHka.

The sequence,

(@15 lem);) -

1eN
is bounded in ["#(Z). Hence, there exists an element (é¥);ez of I"(Z) for which (up to an
omitted extraction) we have for any sequence (d;);ez non-negative real numbers different
from 0 for only a finite number of indices j,

dim Y2 Ajuy[oed; = ) Ed;,
JEZ JEZ

and

1(&5);lime < i inf a3 5

35k Tk .
Pk

Passing to the limit in the sum and using Lemma 1.2 page 2 of [I] with X = Z and u the
counting measure on Z gives that (257, | 1. ); belongs to {"#(Z). From the definition of i,
we conclude that F; is supported in the annulus 2/C where C is defined as in Proposition

. As s1,p; and ry satisfy (4.9 . Lemma |4.3| guarantees that the series Z oz Uj converges
to some u in S)(R™). Given the property 1 ), we have, for all M < N and ¢ e S(R),

N
< 2 Aju, ¢> < Z Z Ajﬂj/,¢>.
j=M J=Mlj'—jl<1

Hence, by definition of @; and again by property (4.3)), we have

Z A, u-zh_r)noo Z Ajuye in S'(R™).

j=M
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Since the condition is satisfies by s1,p; and 71 and (uy())nen is bounded in B;i’” (R™),
Lemma ensures that S MUy tends uniformly to 0 when M goes to —oo. Similarly,
(Id — SN)u¢(i) tends uniformly to 0 in, say, Bzf;_l“ (R™). Hence, u is indeed the limit of
(Ui )ien in S'(R™), which completes the proof of the Fatou property.

Now, we check B;}”"l (R™)n B;g“ (R™) is complete. Consider the Cauchy sequence (u;);en;,
which is of course bounded. Hence, there exists some u in B]ﬁ?” (R™) n B;g“ (R™) and a
subsequence (y(i))ien Which converges to v in S'(R"™). Using the fact that for any € > 0, an
integer n(e€) exists such that if n = m = n(e), then

ltasmy = vy ggrm + Nty = | gzm2 <€,

and the Fatou property ensures that for all m = n(e),

Huw(m) - U‘ B;i’rl + Huqﬂ(m) - U| BZ%’TQ < (.
Hence, the subsequence (uy())ien tends to w in B;i’rl (R™) A B;g,rg (R") and this completes

the proof of the theorem. O]

Remark 4.5. If s > n/p or s =n/p and r > 1, then B;’T(R") is no longer a Banach space.
This is due to a breakdown of convergence for low frequencies, the so-called infrared diver-
gence. There is a way to modify the definition of homogeneous Besov spaces so as to obtain a
Banach space, regardless of the reqularity index s. This is called realizing homogeneous Besov
spaces. It turns out that realizations coincide with our definition when s < n/p or s = n/p
and r = 1. In the other cases, however, realizations are defined up to a polynomial whose
degree depends on s —n/p and r. Unfortunately, dealing with partial differential equations
in such spaces are quite difficult and tedious.

For negative indices of regularity, i.e., s < 0, homogeneous Besov spaces may be charac-
terized in terms of the low frequency cut-off operators ;.

Proposition 4.10. Let s <0, p,r € [1,00], and let u be a distribution in SH(R™). Then u
belongs in By (R™) if and only if

(27 Sjul1s) jez € I"(Z).

Moreover, for some constant C depending only on n, we have
1
<C1+—)|ul
i 5]

299 Ajul 1o < 299(|Sjaull e + |Sjul e

< 2722078yl o + 2] Sju] 1o

C—\s|+1Hu‘

s <[ @185l

8,7 .
BP

Proof. We write
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This proves the left inequality. To prove the right inequality, we write

27| Sjul e <29 ) [ Aju e

§'<ji—1
< 2 28(j_j/)2sj,“Aj/uHLp.
i'<j-1
Since s < 0, the result follows by convolution. O]

4.2.2 Comparison and inequalities between Besov and Lebesgue
spaces

In what follows, we provide some useful embeddings of homogeneous Besov spaces into
Lebesgue spaces, and vice versa. We omit proofs but refer readers to Chapter 2.5 in [I].

n_mn

Proposition 4.11. For any p,q € [1, 0] such that p < q, the space B; 7 (R™) is continu-
ously embedded in the space Co(R™) of continuous functions vanishing at infinity. In addition,
for all q € [1, 0], the space L1(R™) is continuously embedded in the space BS"O(R”), and the

space M of bounded measures on R™ is continuously embedded in BY*(R™).

The next theorem compares homogeneous Besov spaces with regularity index s = 0 and
third index r = 2 to Lebesgue spaces.

Theorem 4.2. For any p € [2,0), 3272(R”) is continuously included in LP(R™) and L¥ (R™)

where p’ is the Hélder conjugate of p, is continuously included in Bg;Q(R”).

Theorem 4.3. For any p € [1,2], the space Bg’p(R”) is continuously included in LP(R™),
and L (R") is continuously included in Bg,’p/ (R™).

The following theorem may be thought of as a refinement of the classical Sobolev em-
bedding theorem.

Theorem 4.4. Let 1 < p < q < o0 and let « be a positive real number. A constant C' exists
such that

HfHLq < CHf‘ lB_;)ea,oo”f’

0
B;P?

wheres=a<q 1) andé’zg.

z_
4.2.3 Heat flow characterization of homogeneous Besov and Triebel—
Lizorkin spaces

For regularity index s < 1, there is a useful characterization of the Besov and Triebel-
Lizorkin spaces using the heat semi-group operator e’2. In the following two propositions,
the usual convention for when p = o or r = o in the norms should be understood.

41



Proposition 4.12. Let 1 < p,r < w0 and s < 1, then the quantities

(Z(Tﬂ'nAjuan) T

JEZ

OO —s rdt %
(RGeS
0

are equivalent and will be referred to by |ul

and

SS5,T .«
Bp

Proposition 4.13. Let 1 <r <o, 1 <p<w and s < 1, then the quantities

' (Z@%M)T)

w0 dt\
(J (tfs|€tAuDr _)
0 t P

are equivalent and will be referred to by |ul

T

and

8,7 .
Fy

4.3 Homogeneous Paradifferential calculus

This section introduces the paradifferential calculus. Namely, we consider Bony’s decompo-
sition for the product of tempered distributions and how this product acts on homogeneous
Besov spaces. Let u and v be tempered distributions in Sj(R™). We have

u = ZAj/u and v = ZAJU’
7' J

then, at least formally,
uv = ZAJ‘/UA]‘U.
7.3
Paradifferential calculus is a mathematical tool for splitting the above sum into three parts.

e The first part concerns the indices (j’,j) for which the size of supp F(Aju) is small
compared to the size of supp F(A;v), i.e., j' < j— Ny for some suitable positive integer
Np.

e The second part contains indices corresponding to those frequencies of u which are
large compared to the frequencies of v, i.e., j' = j + No.
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e The last part we keep the indices (j 4") for which supp F(A;u) and supp F(A;v) have
comparable sizes, i.e., [j — j'| < Np.

The suitable choice for Ny depends on the assumptions made on the support of the function
@ used in the definition of the dyadic blocks. Hereafter, we shall always assume that ¢ is
chosen according to Proposition so that we have Ny = 1. This leads to the following
definition.

Definition 4.5. The homogeneous paraproduct of v by u is defined as follows:
Tu?) = Z Sj,ﬂJ/AjU.
J

The homogeneous remainder of u and v is defined by

R(u,v) = 2 Agudjv.

[k—jl<1

Remark 4.6. It can be checked that T,v makes sense in S'(R™) whenever u and v are in
S\(R") and that T : (u,v) — T,v is a bilinear operator. Additionally, R : (u,v) —> R(u,v)
15 also a bilinear operator when restricted to sufficiently smooth distributions.
The motivation for considering T and R is that, at least formally, the celebrated Bony
decomposition holds, 1i.e.,
w = Ty + Tyu + R(u,v).

In order to understand how the product operates in Besov spaces, we need to study the
continuity properties of the operators T and R.

Remark 4.7. To simplify the presentation, it should be understood hereafter that whenever
erpressions T,v and R(u v) appears, the series with general terms

Sj_lAj’U or Z AjUAj_VU
v|<1
converges to some tempered distribution in Sj(R™).

Theorem 4.5. There exists a constant C' such that for any s € R and any p,r € [1,00], we
have for any (u,v) € L*(R") x B>"(R"),

< O ¥l ur] oo o

58,7 .
BP

Moreover, for any (s,t) € R x (—0,0) and any p,ri,r2 € [1,0],we have for any (u,v) €
Bt )1 (Rn> % Bs T2 (Rn)

O s+t|

—t

[Tl

preir < Jull gori 0] gr

1 . 1 1
with — zmm{l,——k—}.
o T2
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Remark 4.8. By virtue of Lemma [{.3 and the remark that follows it, the hypothesis of
convergence is satisfied whenever (s,p,r) or (s + t,p,r) satisfies (4.9)).

Proof of Theorem[].5. According to (4.5, F(Sj_lAjv) is supported in 2/C. Thus, we are
left with proving the appropriate estimate for |S;_1A;v||z». Lemma 4.1 and Proposition
yield that for any j € Z and t < 0,

: : C »

[Sj-1ulle < Clullp= and |Sj-yulr=e < =i 27 ul gy, (4.10)

where (cj,,)jez denotes an element of the unit sphere of I"(Z). Using Lemma [£.3] the
estimates concerning the paraproducts are proved. O

Now we examine the behavior of the remainder operator R; however, we have to consider
terms of the type AjuAjv, the Fourier transforms of which are not supported in annuli, but
rather in balls of the type 2/ B. Thus, to prove that the remainder operator is bounded in
Besov spaces, we need the following lemma.

Lemma 4.4. Let B be a ball in R™, s is a positive real number, and p,r € [1,00]. A constant
C' exists which satisfies the following. Let (u;)jez be a sequence of smooth functions such
that

supp U; = 2B and H(ZstujHLp)

< 0.
Ir

We assume that the series 3., u; converges to u in Sy(R"). We then have

58, (TN C sj
we By (R") and Jul g < —| 27510

Ir(z)

Remark 4.9. Thanks to Lemma[{.4 and the remark that follows it, the hypothesis of con-
vergence is satisfied whenever s,p and r satisfy condition (4.9).

Proof of Lemmal[{.4 As C is annulus and B is a ball, an integer N; exists such that if
j' =7+ Ny, then 2°C n 2B = . So, if j' = j + Ny, then the Fourier transform of A ju;,
and thus Aju;, is equal to 0. Hence, we may write

[Ajule < ) (A

J>j'—N

<C Y e

J>j' =N
Therefore, we have that
27 Al < 3 27 sl
Jj>j'—N1
<C Y 202 uy .

J>j'—N1

Since s is positive, applying Young’s inequality for series completes the proof of the lemma.

]
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Remark 4.10. Lemma[{.]] indeed fails if s = 0. To see this, fix a non-zero function f €
L”(]R”) spectrally supported in some ball B, and a non-negative real o such that ar > 1. Set
=g f for j =1, and u; = 0 otherwise. It is clear that for all j € Z, supp u; < 2/B

and

(H'U/j”Lp)jeNle < w. Ifr > 1, then we can additionally set « < 1 so that the series

Zj u; diverges in S'(R™). If r = 1, then the series converges to a non-zero multiple of f.
20,1 (N n . - 10,1(mn

As B)H(R") is a proper subspace of LP(R™), the function f need not be in B)*(R"), so the

lemma also fails in this case.

With the above lemma, we are ready to state and prove a resulting concerning the
continuity of the remainder operator.

Theorem 4.6. A constant C' exists which satisfies the following inequalities. Let s1,$2 € R
and py, pa, 1,72 € [1,00]. Assume that

P mop rory T2
If 51 + sq is positive, then we have, for any (u,v) € B;i”’l (R™) x B;;” (R™),

Clsi+sz|+1
porvenr < ———]u|

i
I (u ) —

5571571 H’U| 589,79 .
By, Bps

If r =1 and sy + sy = 0, we have for any (u,v) € B;i’” (R™) x B;;”"Q (R™),

| R(u,v)

s1+s9.00 K C'SlJrSQHIHU‘

81 1 ”U‘

[ 5972
B P2

Remark 4.11. Thanks to Lemma [{.4] and the remark that follows it, the hypothesis of
convergence is satisfied whenever (sy + sa,p,7) or (s + s2,p, ) satisfies (4.9)).

Proof of Theorem[/.6. By definition of the homogeneous remainder operator,

R ZR where R; = 2 A] l,uAv

lv|<1

Since ¢ is supported in the annulus C, the Fourier transform of R; is supported in 27 By, (0).
So, by construction of the dyadic partition of unity, there exists an integer Ny such that

if j/ > j+ Ny, then AyR; = 0. (4.11)

From this, we deduce that
A /R (u,v) = Z A wire

Jj=j'—=
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We deduce from Hoélder’s inequality that

261+ | AL R(u, 0) o < C261797 NV A ud o]

vl<1,7>5'~No

< 02(81+82)j’ Z HAJ‘—VuHLpl ||AjUHLP2

|v|<1,5=5"—No

< 02 (s1ts2)(1=i")9s1(5—v) Z HAj—VUHLpl 9527 HAJ‘UHLm

lv|<1,j=j'—No

In the case where s; + s, > 0, we obtain the result by applying Holder’s inequality and
Young’s inequality for series to the above estimate. In the case where r = 1 and s; + s5 is
non-negative, we use the fact that

9(s1+s2)5’ HA]/R(U, ’U) HLP <C Z 9s1(i—v) HA]'*VUHLT"I QSQJHAJ'UHLP%

|v[<1,525"—No
then take the supremum over j' and use Holder’s inequality for series. O]

With Bony’s decomposition and the above basic results, we can derive a plethora of
properties for Besov spaces. For instance, the space of bounded functions contained in
homogeneous Besov spaces forms a ring structure.

Corollary 4.1. If s € (0,00) and p,r € [1,0:0]| satisfy (4.9)), then L*(R™) n B;”’(R") is an
algebra. Moreover, there exists a constant C', depending only on the dimension n, such that

Proof. Using Bony’s decomposition, we have
w = Ty + Tou + R(u, v).
According to Theorem [4.5] we have

|70l

o < O uf o 0]

sy and HTvu|Bz,r < C¥ )

o Il
Now, by applying Theorem and using the fact that L*?(R") — B%”(R"), we get

. Os-‘,—l
| B(u,v)]

B < [ull goce [v] s < [l o0 s

This completes the proof of the corollary. O
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