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CHAPTER 1

Strong Lp solutions of the incompressible Navier–Stokes equations in

Rn

1.1 Introduction

The aim of this chapter is to provide detailed notes on Tosio Kato’s article on the incom-

pressible Navier–Stokes equation in the whole space [8]. We shall prove some results on the

existence of local and global solutions of the Cauchy problem including some decay properties

for the Navier–Stokes equation in the whole space domain Rn, n “ 2, 3, 4, . . . :

$

&

%

Btu´∆u` pu ¨∇qu`∇p “ fpxq, t ą 0, x P Rn,
∇ ¨ u “ 0,

upx, 0q “ u0pxq,
(1.1)

where u0 P PL
npRnq :“ PLnpRn;Rnq (sometimes denoted by just PLn for short). Here

we shall be concerned with solutions in the mild sense satisfying a corresponding integral

equation and we only consider the inhomogeneous case where f ” 0. Now, the equations

are scale invariant under the scaling transformation

puλpx, tq, pλpx, tqq ÝÑ pλupλx, λ2tq, λ2ppλx, λ2tqq for each λ ą 0.

Hence, this motivates our pursuit of establishing well-posedness for the Navier–Stokes equa-

tions in functions spaces whose norms preserve this scale invariance, since it should naturally

lead to global-in-time well-posedness results. In doing so for the Navier–Stokes equations,

however, some obstacles arise such as the continuity of the bilinear terms and the estimates

for the heat semi-group, for instance. These issues are at the core of the celebrated problem

on the global regularity and well-posedness of the Navier–Stokes equations.
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1.2 Main results

Theorem 1.1. Let u0 P PL
n. Then there exists a T ą 0 and a unique solution u to (1.1)

such that

tp1´n{qq{2u P BCpr0, T q;PLqq for n ď q ď 8, (1.2)

t1´n{2q∇u P BCpr0, T q;PLqq for n ď q ă 8, (1.3)

both with value zero at t “ 0 except when n “ q in (1.2), in which case upx, 0q “ u0pxq.

Moreover, u P Lrpp0, T1q;PL
qq,

1

r
“

1

2

ˆ

1´
n

q

˙

, n ă q ă
n2

n´ 2
for some 0 ă T1 ď T .

Theorem 1.2. There is a λ ą 0 such that if }u0}n ď λ, then the solution u in Theorem

1.1 is global, i.e. we may take T “ T1 “ 8. In particular, }uptq}q decays like t´p1´n{qq{2 as

t ÝÑ 8, including q “ 8, and }∇uptq}q decays like t´p1´n{2qq as t ÝÑ 8, including q “ n.

1.3 Proof of Theorem 1.1

In this section, be shall prove Theorem 1.1 by first providing a complete outline of the proof

by identifying the main key steps. We then fill in the details for each main step in the proof

in the next section.

I. Reformulate (1.1) as an integral equation of the form

u “ et∆u0 `Bu.

Essentially, we obtain the desired well-posedness result of Theorem 1.1 by proving the

existence and uniqueness of fixed point solutions to this integral equation.

(1) Let et∆ be the heat semi-group (convolution) operator on Rn. Since u0 P PL
n, then

et∆u0 belongs in BCpr0, T q;PLnq.

(2) Let P be the orthogonal projection from L2pRnq onto H, where

H :“ PL2
pRn

q “ tv P L2
pRn

q | ∇ ¨ v “ 0u.

More precisely, the following Hodge decomposition holds: each vector field u in

L2pRnq X C8pRnq has a unique orthogonal decomposition:

u “ w `∇p,

with the following properties:

(i) ∇ ¨ w “ 0,
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(ii) w and ∇p belong in L2pRnq X C8pRnq,

(iii) pw,∇pqL2 “ 0,

(iv) for any multi-index β of the derivatives Dβ, |β| ě 0,

}Dβu}22 “ }D
βw}22 ` }∇Dβp}22.

Thus, P : L2pRnq ÝÑ PL2pRnq is defined by the projection map

Pu “ Ppw `∇pq “ w.

Observe that the divergence-free condition on w implies that we can recover p from

u by the elliptic equation ∆p “ ∇ ¨ u. Once p is found, we obtain w from the

relationship w “ u´∇p.
One can show the projection operator is bounded in the dense subspace L2pRnq X

LppRnq. By a standard density and continuity argument, we can extend this as a

bounded operator P : LppRnq ÞÑ PLppRnq :“ tv P LppRnq | ∇ ¨ v “ 0u, 1 ă p ă 8.

Alternatively, we can define the projection operator using Riesz transforms,

Rj “ Djp´∆q´1{2, j “ 1, 2, . . . , n,

where Dj “ ´i
B

Bxj
. For an arbitrary vector field vpxq “ pv1pxq, v2pxq, . . . , vnpxqq,

we set zpxq “
n
ÿ

k“1

pRkvkqpxq and defined the operator P by

pPvqjpxq “ vjpxq ´ pRjzqpxq “
n
ÿ

k“1

pδjk ´RjRkqvk, j “ 1, 2, . . . , n.

Sometimes, this is written more concisely as

P “ Id´∇∆´1div “ P “ Id`∇p´∆q´1div.

(3) Here we give a precise definition of the bilinear operator B.

(a) F pu, vq :“ Pppu ¨∇qvq “ P∇ ¨ pub vq and F puq :“ F pu, uq for u, v P PLq.

(b) Bpu, vq :“ ´

ż t

0

ept´sq∆F pupsq, vpsqq ds and Buptq :“ Bpu, uq.

(c) Observe that we must define F pu, vq in the distribution sense, i.e., for any

smooth test function ϕ with compact support,

xPpu ¨∇vq, ϕy :“ Ppuivi,jqpϕjq “ ´
ż

Rn
uivjpPϕjqj,i.
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(4) Deriving the integral equation from (1.1). Note that since it is assumed the velocity

field u is divergence-free, we have that u “ Pu. Thus applying P : LqpRnq ÞÑ

PLqpRnq yields

Btu´∆u “ ´F puq.

We can reformulate this non-linear, non-homogeneous heat equation into the de-

sired integral equation via Duhamel’s principle.

II. Establish the required estimates and find a suitable function space to set up the fixed

point problem for the Integral equation.

(1) Basic Estimates for the Heat Semi-group Operator:

(a) }et∆u}q ď Cnt
´pn{p´n{qq{2}u}p with 1 ă p ď q ď 8,

(b) }∇et∆u}q ď Cnt
´p1`n{p´n{qq{2}u}p with 1 ă p ď q ă 8.

(c) }F pu, vq}p ď Cn}u}r}∇v}s where
1

p
“

1

r
`

1

s

Estimate (c) is just the Hölder inequality.

(2) Bilinear Estimates, i.e., estimates on the bilinear operator B.

Let 1
p
“ α

n
`

β
n
. Applying the heat kernel estimates to B yield

}Bu}q ď Cn

ż t

0

pt´ sq´pα`β´n{qq{2}upsq}n{α}∇upsq}n{β ds,

}∇Bu}q ď Cn

ż t

0

pt´ sq´p1`α`β´n{qq{2}upsq}n{α}∇upsq}n{β ds.

Remark 1.1. Here we assume n{q ď α ` β ă n so that q ě p ą 1. Moreover, we

must assume α ` β ´ n{q ă 2 and 1 ` α ` β ´ n{q ă 2 in order for the improper

integrals in the Bilinear Estimates to converge.

(3) Identify the appropriate space.

(a) Let

Xq1,q2,T :“
 

u | tp1´n{q1q{2u P BCpr0, T s;PLq1q, t1´n{2q2∇u P BCpr0, T s;PLq2q
(

.

(b) Equip the function space Xq1,q2,T with the norm

}u}q1,q2,T :“ Kpu, q1, T q `K
1
pu, q2, T q,

where

Kpu, q1, T q :“ sup
0ďtďT

tp1´n{q1q{2}uptq}q1

and

K 1
pu, q2, T q :“ sup

0ďtďT
t1´n{2q2}∇uptq}q2 .
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(4) Estimates on the bilinear operator B.

Given q ě n and for any fixed 0 ă δ ă 1,

}Bu´Bv}q,n,T ď Ct}u}n{δ,n,T ` }v}n{δ,n,T u}u´ v}n{δ,n,T (1.4)

where C “ Cpn, q, δq depends on n, q, and δ,
n

q
ď δ ` 1 ď n. We note that we

establish this contraction estimate using the bilinear estimates on B with β “ 1,

and α “ δ.

III. Use the Contraction Mapping Principle to obtain the local existence and uniqueness of

mild solutions to the integral equation

u “ Φu :“ et∆u0 `Bu satisfying conditions (1.2)–(1.3).

In proving Kato’s results, we shall only consider two cases: when n ă q or when n “ q

in (1.2) where we always fix q “ n in (1.3).

(1) Case: n
q
ă 1.

We set up a fixed point problem.

(a) Φ : Bp0, 1{4Cq Ă Xq,n,T ÝÑ Bp0, 1{4Cq for T ą 0 sufficiently small.

(b) }Φu´ Φv}q,n,T ď
1
2
}u´ v}q,n,T for all u, v P Bp0, 1{4Cq.

(2) Case: q “ n.

Similarly as the previous case, however, to show u P BCpr0, T q;PLnq, we set up a

fixed point problem with slight modifications.

(a) Define Ω1 :“ Bp0, Rq Ă BCpr0, T s;PLnq and Ω2 :“ Bp0, 1{8Cq Ă Xn
δ
,n,T , and

consider the intersection subspace Ω :“ Ω1 X Ω2 equipped with the norm

} ¨ } :“ } ¨ }n,n,T ` } ¨ }n
δ
,n,T

for a fixed 0 ă δ ă 1 and the constant C “ maxtC1, C2u where Ci come from

the contraction estimates below.

(b) Show Φ maps Ω1 to itself and Ω2 to itself.

(c) Contraction estimates: For any u, v P Ω, we have the following:

• }Bu´Bv}n,n,T ď C1

`

}u}n
δ
,n,T ` }v}n

δ
,n,T

˘

}u´ v}n
δ
,n,T ď

1
4
}u´ v}n

δ
,n,T .

• }Bu´Bv}n
δ
,n,T ď C2

`

}u}n
δ
,n,T ` }v}n

δ
,n,T

˘

}u´ v}n
δ
,n,T ď

1
4
}u´ v}n

δ
,n,T .

Thus

}Φu´ Φv} ď
1

2
}u´ v}

for all u, v P Ω.
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(d) By the Contraction mapping principle, there exists a unique solution u P Ω to

the integral equation u “ Φu.

Remark 1.2. The above estimates on B are a crucial ingredients in the proofs of Theorems

1.1 and 1.2 and illustrates the need to consider intersection of subspaces and connects the

two cases when q ą n and q “ n. Namely, for the case q “ n, we are not able to close the

estimates with respect to the function space Xn,n,T . Fortunately, we can close the estimates

in the subspace Xn
δ
,n,T thereby circumventing the difficulty by taking the intersection of the

two spaces and applying the fixed point argument to the integral equation valued in this new

intersection space.

Remark 1.3. Although we only consider two cases for the value of q, it is simple to prove

the actual theorem for all given values of q; that is, we can prove the integrability for the

unique strong solution for all indices of q ě n. More specifically, we can adopt the same

fixed point argument as above but in the space

XT
.
“

č

q1,q2ěn

Xq1,q2,T

equipped with the norm

} ¨ }XT
.
“

ÿ

q1,q2ěn

} ¨ }q1,q2,T .

Here, we allow q1 “ 8.

1.4 Detailed calculations in the proof of Theorem 1.1

Let us first prove the heat kernel estimates II.(2). Recall that

et∆u “ Gt ˚ u “
1

p4πtqn{2

ż

Rn
e´

|x´y|2

4t upy, tq dy.

Using Young’s inequality, we have

}et∆u}q “ }Gt ˚ u}q ď }Gt}r}u}p where 1`
1

q
“

1

r
`

1

p

ď
1

p4πtqn{2

ˆ
ż

Rn
e´

r|x|2

4t dx

˙1{r

}u}p

“
loomoon

w“x{
?

4t

1

p4πtqn{2

ˆ
ż

Rn
e´r|w|

2

p4tqn{2 dw

˙1{r

}u}p

ď Cnt
´pn´n{rq{2

}u}p

ď Cnt
´pn{p´n{qq{2

}u}p.
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Similarly, the estimate on ∇et∆u follows similarly by first absorbing the derivative onto to

the heat kernel, i.e.,

}∇et∆u}q “ }∇Gt ˚ u}q ď }∇Gt}r}u}p ď Cnt
´p1`n´n{rq{2

}u}p ď Cnt
´p1`n{p´n{qq{2

}u}p.

Now let us prove the Bilinear estimates II.(2) using the heat kernel estimates. Recall that

1

p
“
α

n
`
β

n
.

Then

}Bu}q :“ }Bu}q ď
›

›

›

ż t

0

ept´sq∆F pupsqq ds
›

›

›

q

ď

ż t

0

}ept´sq∆F pupsqq}q ds

ď

ż t

0

pt´ sq´pn{p´n{qq{2}F pupsqq}p ds

ď

ż t

0

pt´ sq´pα`β´n{qq{2}upsq}n{α}∇upsq}n{β ds.

Similarly,

}∇Bu}q ď
›

›

›

ż t

0

∇ept´sq∆F pupsqq ds
›

›

›

q

ď

ż t

0

}∇ept´sq∆F pupsqq}q ds

ď

ż t

0

pt´ sq´p1`n{p´n{qq{2}F pupsqq}p ds

ď

ż t

0

pt´ sq´p1`α`β´n{qq{2}upsq}n{α}∇upsq}n{β ds.

Let us now prove (1.4). Recall that β “ 1 and α “ δ P p0, 1q. Using the bilinear

estimates and a change of variables, we compute
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}Buptq ´Bvptq}q ď

ż t

0

pt´ sq´p1`δ´n{qq{2}pu´ vq ¨∇u` v ¨∇pu´ vq}p ds

ď C

ż t

0

pt´ sq´p1`δ´n{qq{2
!

}u´ v}n{δ}∇u}n ` }v}n{δ}∇pu´ vq}n
)

ds

ď C

ż t

0

pt´ sq´p1`δ´n{qq{2s´p1´δ{2qs´p1´1{2q
ˆ

ˆ

!

Kpu´ v, n{δ, T qK 1
pu, n, T q `Kpv, n{δ, T qK 1

pu´ v, n, T q
)

ds

ď
loomoon

s̃“s{t

C

ż 1

0

ptp1´ s̃qq´p1`δ´n{qq{2ps̃tq´p2´δq{2t ds̃ˆ

ˆ

!

Kpu´ v, n{δ, T qK 1
pu, n, T q `Kpv, n{δ, T qK 1

pu´ v, n, T q
)

ď Ct´p1`δ´n{q`2´δ´2q{2

ż 1

0

p1´ sq´p1`δ´n{qq{2s´p2´δq{2 dsˆ

ˆ

!

Kpu´ v, n{δ, T qK 1
pu, n, T q `Kpv, n{δ, T qK 1

pu´ v, n, T q
)

ď Ct´p1´n{qq{2
!

ż 1

0

p1´ sq´p1`δ´n{qq{2s´p2´δq{2 ds
)

ˆ

ˆ

!

Kpu´ v, n{δ, T qK 1
pu, n, T q `Kpv, n{δ, T qK 1

pu´ v, n, T q
)

(1.5)

Similarly,

}∇Buptq ´∇Bvptq}n ď
ż t

0

pt´ sq´p2`δ´n{nq
!

}u´ v}n{δ}∇u}n ` }v}n{δ}∇pu´ vq}n
)

ds

ď C

ż t

0

pt´ sq´p1`δq{2s´p1´δq{2s´p1´1{2q ds

ˆ

!

Kpu´ v, n{δ, T qK 1
pu, n, T q `Kpv, n{δ, T qK 1

pu´ v, n, T q
)

ď Ct´1{2
!

ż 1

0

p1´ sq´p1`δq{2s´p2´δq{2 ds
)

ˆ

ˆ

!

Kpu´ v, n{δ, T qK 1
pu, n, T q `Kpv, n{δ, T qK 1

pu´ v, n, T q.

(1.6)

Combining the two estimate (1.5) and (1.6) and taking the supremum over t yields the

desired contraction estimates.

Let us now show the existence and uniqueness of a local-in-time fixed point solution to

u “ Φu. Here we shall consider n ď q ă 8 in (1.2) and q “ n in (1.3). The other cases for

n and q are treated similarly.
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Remark 1.4. As in the previous remark, the difficulty that stems from the contraction

estimate is that we must impose the condition α “ δ P p0, 1q for the case q “ n, i.e., when

1 “ n{q. Namely, the estimates do not hold when δ “ 1 for this case since the improper

integrals in the bilinear estimates diverge (recall we had to assume that 1 ` α ` β ´ n{q “

1` δ ` 1´ 1 ă 2).

The next result concerns the estimates on the heat kernel acting on the initial data u0 P

PLnpRnq. These estimates are required for the fixed point argument, however, we require

a splitting of the initial data into a small part and a smooth compactly supported part. As

LnpRnq is a critical space, however, the scaling invariance is negated by the splitting of the

initial condition and so rescaling cannot be used to obtain global well-posedness. We resolve

this issue and deduce a global existence result but at the expense of restricting ourselves to

sufficiently small initial data.

We digress somewhat to clarify the notion of a critical function space for the incompress-

ible Navier–Stokes equations in R3.

Definition 1.1. A translation or shift invariant Banach space of tempered distributions X

is called a critical space for the Navier–Stokes equations if its norm is invariant under the

action of the scaling fpxq ÝÑ λfpλxq for any λ ą 0. In other words, we require that

X ãÑ S 1

and that for any f P X

}fp¨q}X “ }λfpλ ¨ ´x0q}X for all λ ą 0, and for all x0 P Rn.

Remark 1.5. Some examples of critical spaces for the three-dimensional Navier–Stokes equa-

tions are the following:

9H
1
2 pR3

q ãÑ L3
pR3
q ãÑ 9B´1`3{q,8

q pR3
q ãÑ BMO´1

pR3
q ãÑ 9B´1,8

8 pR3
q,

where q ě 3 and the homogeneous Besov space 9B´1,8
8 pR3q is the largest critical space. Here,

we shall focus on the Lebesgue space, L3pR3q in great detail, especially in next chapter.

Generally speaking, the Lebesgue space LnpRnq, p “ n is a critical space for the Navier–

Stokes equations in Rn.

More generally, it turns out that for q and r P r1,8s, the homogeneous Besov spaces
9B
´1`n{q,r
q pRnq are critical spaces for the Navier–Stokes equations in Rn, and this follows

from the next result.

Proposition 1.1. Let s P R and q, r P r1,8s. Then there exists a constant C ą 0, depending

only on s, such that

C´1λs´n{q}u} 9B
´1`n{q,r
q pRnq ď }upλ ¨ ´x0q} 9B

´1`n{q,r
q pRnq ď Cλs´n{q}u} 9B

´1`n{q,r
q pRnq

for all u P 9B
´1`n{q,r
q pRnq.
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Surprisingly, showing that 9B´1,8
8 pR3q is the largest critical space is very simple to prove.

Proposition 1.2. The homogeneous Besov space 9B´1,8
8 pRnq is the largest critical space for

the Navier–Stokes equations.

Proof. Let X ãÑ S 1pRnq be some critical space, i.e., assume that for any pλ, x0q P p0,8qˆRn,

}upλ ¨ ´x0q}X “ λ´1
}u}X .

Now, we want to show X ãÑ 9B´1,8
8 pRnq. Since X is continuously embedded in S 1pRnq, we

have that

|xu, e´|¨|
2

y| ď C}u||X .

Then for any x P Rn with x0 “ ´x and using the substitution y ÝÑ λy ` x, we obtain

1

λn

ż

Rn
upyqe´|x´y|

2{λ2 dy “

ż

Rn
upλy ´ x0qe

´|y|2 dy “ xupλ ¨ ´x0q, e
´|¨|2

y

ď C}upλ ¨ ´x0q}X “ Cλ´1
}u}X .

From this, we use dilation with λ “
?
t to get

?
t}et∆u}L8pRnq ď C}u}X for all t ą 0,

which implies for q “ 8,

}u} 9B
´1`n{q,8
q pRnq “ }u} 9B´1,8

8 pRnq
.
“ sup

tą0

?
t}et∆u}L8pR3q ď C}u}X

This completes the proof.

Remark 1.6. In the later chapters, we give a concise overview of the homogeneous Besov

spaces with the help of the Littlewood–Paley decomposition.

We return to the details of the proof of Theorem 1.1. The following lemma examines the

required step of splitting the initial data. This is precisely the mechanism responsible for

requiring our smallness restriction on u0.

Lemma 1.1 (Splitting of initial data). If q ą n, then

• }tp1´n{qq{2et∆a}q ÝÑ 0 as t ÝÑ 0,

• }t1{2∇et∆a}q ÝÑ 0 as t ÝÑ 0.

Proof. To prove these two properties, we split the initial condition using a density argument.

Indeed, for each ε ą 0, we decompose u0 into u0 “ a1 ` a2, where a1 is an Ln function with
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small Ln-norm, i.e., }a1}n ď ε and a2 is a smooth and compactly supported function. Let

δ “ n
q
P p0, 1q and fix some l P pδ, 1q, then the heat kernel estimates imply

}tp1´δq{2et∆u0}q “ }t
p1´δq{2et∆u0}n{δ

ď }tp1´δq{2et∆a1}n{δ ` }t
p1´δq{2et∆a2}n{δ

ď Cnt
p1´δq{2t´pn{n´n{pn{δqq{2}a1}n ` t

p1´l`l´δq{2
}et∆a2}n{δ

ď Cnε` t
p1´lq{2tpl´δq{2t´pn{pn{lq´n{pn{δqq{2}a2}n{l

ď Cn

!

ε` tp1´lq{2}a2}n{l

)

.

The second property is verified in a similar fashion.

The previous estimate implies that if our initial datum u0 is sufficiently small in LnpRnq,

then et∆u0 will remain small in global time. Now we ready to exploit these smallness prop-

erties in setting up our fixed point argument. In other words, we can now choose T ą 0

sufficiently small so that }et∆u0}n{δ,n,T ď 1{8C. For u P Bp0, 1{4Cq Ă Xn{δ,n,T ,

}Φu}n{δ,n,T ď }e
t∆u0}n{δ,n,T ` }Bu}n{δ,n,T

ď
1

8C
`

1

2

1

4C
“

1

4C
from section III.2.c.

So Φ maps Bp0, 1{4Cq into itself. Using the contraction estimates,

}Bu´Bv}n{δ,n,T ď
1

2
}u´ v}n{δ,n,T ,

so by the Contraction mapping principle, there exists a unique u P Bp0, 1{4Cq such that

u “ Φu.

Let n
q
“ 1. We will show u P BCpr0, T s;PLnq with the aide of the previous case. First

we define the following subspaces:

• Ω1 :“ Bp0, Rq Ă BCpr0, T s;PLnq where R is to be later specified,

• Ω2 :“ Bp0, 1{4Cq Ă Xn{δ,n,T ,

• Consider the closed subspace Ω :“ Ω1 X Ω2 equipped with the norm

} ¨ }Ω :“ } ¨ }n,n,T ` } ¨ }n{δ,n,T .

Hence, Ω is complete under the induced norm topology.

From the contraction estimates III.2.c, for any u, v P Ω,

• }Buptq ´Bvptq}n{δ,n,T ď C1

 

}u}n{δ,n,T ` }v}n{δ,n,T
(

}uptq ´ vptq}n{δ,n,T ,

13



• }Buptq ´Bvptq}n,n,T ď C2

 

}u}n{δ,n,T ` }v}n{δ,n,T
(

}uptq ´ vptq}n{δ,n,T .

Now set R “ sup
0ďtďT

}et∆u0}n ` 1{C with C “ maxtC1, C2u, then

}Φu}Ω1 ď }e
t∆u0}Ω1 ` }Bu}Ω1 ď sup

0ďtďT
}et∆u0}m ` 1{16C ă R,

and

}Φu}Ω2 ď }e
t∆u0}Ω2 ` }Bu}Ω2 ď

1

8C
` C

ˆ

1

16C2
`

1

16C2

˙

ď 1{4C.

Thus Φ maps Ω into itself and the contraction estimates imply it is a contraction mapping

on Ω. Hence, the Contraction mapping principle implies the existence and uniqueness of an

element u P Ω such that u “ Φu.

1.5 Proof of Theorem 1.2

Global well-posedness: Observe that the bilinear estimates hold for any time T ą 0 and

that we can find a suitably small λ ą 0 such that if }u0}n ď λ, then the bilinear estimates

and the norms of et∆u0 are independent of T . For instance, let us verify this for the latter

statement. Recall from the heat kernel estimates, we get

}et∆u0}n{δ ď Ct´p1´δq{2}u0}n,

and

}∇et∆u0}n ď Ct´1{2
}u0}n.

Hence, we may take T “ 8 in the space Xn{δ,n,T and

}et∆u0}n{δ,n,8 ď C}u0}n

and our fixed point argument applies accordingly. That is, we may find an absolute constant

λ such that if }u0}n ď λ then the contraction mapping principle implies global-in-time

existence and uniqueness of a solution in the usual subspace of Cpr0,8q;LnpRnqq. The

remaining asymptotic results follow from Theorem 1.1.

Remark 1.7. The global existence and uniqueness result of Kato presented here holds for

a smaller subspace of BCpr0,8q;LnpRnqq, yet it was not known at that time whether this

solution is unique in BCpr0,8;LnpRnqq. Indeed, it was proved to be unique in this class

later in [5]. In addition, basic regularity theory implies this unique solution is also smooth

for t ą 0 (cf. [9] for proofs of these regularity and uniqueness results).
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CHAPTER 2

Extension of Kato’s theorem for the Navier–Stokes equations in

critical Lebesgue and Besov spaces

In this chapter, we extend Kato’s existence theorems of Chapter 1 by following the work of

Cannone [3]. Namely, we obtain a global well-posedness result for the incompressible Navier–

Stokes equations in the critical space LnpRnq with solenoidal initial data u0 P L
npRnq which

are small in the homogeneous Besov space 9B
1´n{q,8
q pRnq. In particular, the types of initial

data that exhibit these properties include those which are sufficiently oscillating.

For the sake of simplicity, we only consider the three-dimensional incompressible Navier–

Stokes equations:

$

&

%

Btu´∆u` pu ¨∇qu`∇p “ 0, t ą 0, x P R3,
∇ ¨ u “ 0,

upx, 0q “ u0pxq,
(2.1)

We reduce this problem into the mild integral equation:

uptq “ et∆u0 `Bpu, uq, (2.2)

where the bilinear operator is defined as

Bpu, vq “ ´

ż t

0

ept´sq∆P∇ ¨ pub vq ds. (2.3)

We mention that the equivalence between (2.1) and (2.2) holds under classical solutions and

even weaker notions of suitable solutions (cf. [9] for further details on the matter). Let

us also mention the familiar idea of showing the existence of fixed point solutions to this

integral equation in the setting of Lebesgue spaces. As stated later in Section 2.1.1, the
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key idea is to identify the functional space in which to set up the fixed point argument,

however, the bi-continuity of the bilinear operator required in applying Picard’s theorem

breaks down in the critical space Cpr0, T q;PL3pR3qq. In fact, in his unpublished doctorial

thesis, F. Oru proved the non-continuity of the bilinear operator not only in this case but also

in Cpr0, T q;Lp3,qqpR3qq where q P r1,8q and Lp3,qqpR3q is a Lorentz space. It is interesting

that the limiting case where q “ 8 is completely different, since Y. Meyer in [10] showed that

the bi-continuity holds in Cpr0, T q;Lp3,8qpR3qq. Nevertheless, the issue of continuity in the

class Cpr0, T q;PL3pR3qq was circumvented in Chapter 1 by carefully choosing an appropriate

auxiliary subspace of the critical space in which the bi-continuity property holds. The results

in this chapter essentially adopts the same ideas but weakens Kato’s original assumptions on

the initial data. On the other hand, the bi-continuity of the bilinear operator holds easily for

the super-critical spaces, Cpr0, T q;LqpR3qq where q ą 3. However, as a caveat, this continuity

is only good enough to establish local well-posedness and it remains to be known if global

well-posedness holds. For completeness sake, we state and prove the existence results for

both critical and super-critical spaces below.

To elucidate the differences between Cannone’s theorem with that of Kato’s—at the ex-

pense of repeating ourselves—we state both theorems. We can state a simplified version of

Kato’s Theorem (Theorem 1.1 in Chapter 1) as follows.

Note that from this point on, we set α “ αpqq
.
“ 1´ 3{q.

Theorem 2.1 (Kato). Let q P p3, 6s be fixed. Then there exists an absolute constant δ ą 0,

such that if u0 P L
3pR3q, }u0}3 ă δ, and ∇ ¨ u0 “ 0 (in the distribution sense), then there

exists a global mild solution of the Navier–Stokes equations in Cpr0,8q;L3pR3qq. Moreover,

this solution is the only one such that

upt, xq P Cpr0,8q;PL3
pR3
qq,

tα{2upt, xq P Cpr0,8q;PLqpR3
qq,

and

lim
tÝÑ0

tα{2}uptq}q “ 0.

Theorem 2.2 (Cannone). Let q P p3, 6s be fixed. Then there exists an absolute constant

δ ą 0 such that if u0 P L
3pR3q, }u0} 9B´α,8q

ă δ, and ∇ ¨ u0 “ 0 (in the distribution sense),

then there exists a global mild solution of the Navier–Stokes equations in Cpr0,8q;PL3pR3qq.

Moreover, this solution is the only one such that

upt, xq P Cpr0,8q;PL3
pR3
qq,

tα{2upt, xq P Cpr0,8q;PLqpR3
qq,

and

lim
tÝÑ0

tα{2}uptq}q “ 0.
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2.1 Some preliminaries and the main result

In this section, we provide the necessary background for obtaining the main existence theo-

rem, then we prove the main results of this chapter.

2.1.1 Bicontinuous bilinear operators and Picard’s Theorem

Proposition 2.1 (Picard Contraction Principle). Let X be an abstract Banach space with

norm } ¨ }X and B : X ˆ X ÝÑ X a bilinear operator. Suppose that B : X ˆ X ÝÑ X is

bicontinuous, i.e., for any x1, x2 P X,

}Bpx1, x2q}X ď η}x1}X}x2}X ,

then for any y P X such that 4η}y}X ă 1, the equation

x “ y `Bpx, xq

has a solution x P X. In particular, the solution satisfies }x}X ď 2}y}X and is the only one

for which }x} ă 1
2η

.

Proof. The proof is quite standard, but we provide it for the reader’s convenience. Set

R :“ 2}y}X and define the map Φpxq : X ÝÑ X such that

Φpxq “ y `Bpx, xq.

Then

}Φpxq}X ď }y}X ` }Bpx, xq}XˆX ď }y}X ` η}x}X}x}X

ď }y}X ` ηp2}y}Xq
2
ď }y}X ` 4η}y}2X

ď }y}Xp1` 4η}y}X
loomoon

ă1

q ď 2}y}X ď R.

Thus, this implies that Φpxq maps BRp0q Ă X, the closed ball of radius R centered at the

origin, to itself. Moreover, for any x1 and x2 in BRp0q,

}Φpx1q ´ Φpx2q}X ď }Bpx1, x1q ´Bpx2, x2q}X

ď }Bpx1 ´ x2, x1q `Bpx2, x1 ´ x2q}X

ď }Bpx1 ´ x2, x1q}X ` }Bpx2, x1 ´ x2q}X

ď η}x1}X}x1 ´ x2}X ` η}x2}X}x1 ´ x2}X

ď 2Rη
loomoon

“ 4η}y}X

}x1 ´ x2}X
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Thus, Φ : BRp0q ÝÑ BRp0q is a strict contraction and, by Picard iteration, implies there

exists a unique fixed point x P BRp0q such that Φpxq “ x, i.e., x “ y `Bpx, xq.

Now, suppose that x̃ P X is another fixed point solution for which }x}X , }x̃}X ă 1{2η.

Then we have

}x´ x̃}X “ }Φpxq ´ Φpx̃q}X ď }Bpx, xq ´Bpx̃, x̃q}X

ď }Bpx´ x̃, xq `Bpx̃, x´ x̃q}X

ď η}x}X}x´ x̃}X ` η}x̃}X}x´ x̃}X

ď ηp}x}X ` }x̃}Xq}x´ x̃}X

ă ηp1{2η ` 1{2ηq}x´ x̃}X

ď }x´ x̃}X ,

which implies x “ x̃. This completes the proof.

2.1.2 The Littlewood–Paley decomposition

Let us describe the Littlewood–Paley decomposition in R3. We arbitrarily choose a function

ϕ in the Schwartz space SpR3q and whose Fourier transform pϕ satisfies

0 ď pϕ ď 1, pϕpξq “ 1 if |ξ| ď 3{4, pϕpξq “ 0 if |ξ| ě 3{2,

and let

ψpxq “ 8ϕp2xq ´ ϕpxq,

ϕjpxq “ 23jϕp2jxq, j P Z,

ψjpxq “ 23jψp2jxq, j P Z.

Denote by Sj and ∆j, respectively, the convolution operators with ϕj and ψj. The set

tSj,∆jujPZ is the Littlewood–Paley decomposition for which

I “ S0 `
ÿ

jě0

∆j. (2.4)

Note that this decomposition does not depend on the choice of ϕ. Moreover, for any given

tempered distribution f P S 1pR3q,

f “ lim
jÝÑ8

S0f `
ÿ

jě0

∆jf. (2.5)

In particular, the identity,

f “
ÿ

jPZ

∆jf,

is to be understood modulo polynomials, i.e., f P S 1pR3qzP .

Let us describe this decomposition in a more precise manner. We start with the following

theorem.
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Theorem 2.3. For all N P Z and all f P S 1pR3q, we have

f “ SNf `
ÿ

jěN

∆jf P S 1pR3
q.

This equality is called the Littlewood–Paley decomposition of the distribution f . If, moreover,

limNÑ´8 SNf “ 0 in S 1pR3q, then the equality

f “
ÿ

jPZ

∆jf

is called the homogeneous Littlewood–Paley decomposition of f .

Definition 2.1. We define the space of tempered distributions vanishing at infinity as the

space S 10pR3q of distributions so that limNÑ´8 SNf “ 0 in S 1pR3q.

For more general tempered distributions, we cannot recover them from their homogeneous

Littlewood–Paley decomposition but modulo polynomials:

Lemma 2.1. For all f P S 1pR3q, there is an integer N and a sequence of polynomials tPjujPZ
of degree ď N so that

ÿ

jPZ

∆jf ` Pj

converges to f in S 1pR3q. Hence, the equality,

f “
ÿ

jPZ

∆jf,

holds in S 1pR3q{CrX1, X2, . . . , Xd“3s.

Remark 2.1. We can see that S 10pR3q “ S 1pR3qzP. The interest in decomposing a tempered

distribution into a sum of dyadic blocks ∆jf , whose support in Fourier space is localized

in a corona, comes from the favorable behavior of these blocks with respect to differential

operations. This can be illustrated by the celebrated Bernstein’s Lemma in R3.

Lemma 2.2 (Bernstein). Let 1 ď p ď q ď 8 and k P N, then

sup
|α|“k

}Dαf}p » Rk
}f}p,

and

}f}q À R3p 1
p
´ 1
q
q
}f}p,

whenever f P S 1pR3q whose Fourier transform f̂pξq is supported in the corona |ξ| » R.

In case the function has support in a ball (e.g. Sjf), then the following version holds.

Lemma 2.3. Let 1 ď p ď q ď 8 and k P N, then

sup
|α|“k

}Dαf}p » Rk
}f}p,

and

}f}q À R3p 1
p
´ 1
q
q
}f}p,

whenever f P S 1pR3q whose Fourier transform f̂pξq is supported in the ball |ξ| À R.
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2.1.3 The Besov spaces 9B´α,8q pR3q

Here, we shall provide a brief characterization of homogeneous Besov spaces via Littlewood-

Paley theory. There is a natural motivation for examining well-posedness for the Navier–

Stokes equations in the homogeneous Besov spaces, since these function spaces are appro-

priate for scale invariant equations.

Definition 2.2. Let q be fixed in 1 ď q ď 8 and α P R. A tempered distribution f P S 10pR3q

belongs in the Besov space 9B´α,8q pR3q if

}f} 9B´α,8q
“ sup

jPZ
2´jα}∆jf}q

is finite. The following lemma provides an equivalent characterization of the Besov space
9B´α,8q pR3q in terms of the heat semi-group. This is useful since our estimates below involves

the heat semi-group.

Lemma 2.4. Let q be fixed in 1 ď q ď 8 and α ą 0. For any tempered distribution

f P S 10pR3q, the following norms,

paq sup
jPZ

2´jα}∆jf}q,

pbq sup
jPZ

2´jα}Sjf}q,

pcq sup
tě0

tα{2}et∆f}q,

pdq sup
tě0
}et∆f} 9B´α,8q

,

are equivalent.

The next lemma is on the embedding properties between L3pR3q and these Besov spaces.

Lemma 2.5. Let q1 and q2 be two fixed constants in 3 ď q1 ď q2 ď 8, and set α1 “ 1´ 3{q1

and α2 “ 1´ 3{q2. Then

L3
pR3
q ãÑ 9B´α1,8

q1
pR3
q ãÑ 9B´α2,8

q2
pR3
q.

Proof. From the Bernstein’s inequalities, we deduce that

2´jα2}∆jf}q2 À 2´jα1}∆jf}q1 À }∆jf}3 À }f}3.

The desired result follows immediately.

We point out that the following chain of continuous embeddings are strict. For instance,

the function |x|´1 belongs in 9B´α,8q pR3q, however, |x|´1 R L3pR3q.
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2.1.4 The proof of Theorem 2.2

Let X “ G be the Banach space of functions vpt, xq satisfying

vpt, xq P Cpr0,8q;PL3
pR3
qq, (2.6)

tα{2vpt, xq P Cpr0,8q;PLqpR3
qq, (2.7)

and

lim
tÝÑ0

tα{2}vptq}q “ 0. (2.8)

equipped with the norm

}v}G :“ sup
tą0
}vptq} 9B´α,8q

` sup
tą0

tα{2}vptq}q. (2.9)

Now, let us state and prove some important lemmas that will play significant roles in the

proof of the main theorem.

Lemma 2.6. If u0 P PL
3pR3q, then et∆u0 P G.

Proof. We will prove that et∆u0 satisfies (2.6)–(2.8). First, it is clear that the heat semi-

group operator u0 ÝÑ et∆u0 preserves the divergence-free condition. Secondly, recall from

Lemma 2.4 that the norm of et∆u0 in G is equivalent to 9B´α,8q pR3q norm of u0 and that

L3pR3q ãÑ 9B´α,8q pR3q, i.e.,

}u0} 9B´α,8q
À }et∆u0}G À }u0} 9B´α,8q

À }u0}3.

Hence, et∆u0 P Cpr0,8q;PL
3pR3qq. Moreover, the heat kernel estimates of Chapter 1 imply

}tα{2et∆u0}q ď tα{2t´p3{3´3{qq{2
}u0}3 “ tpα´αq{2}u0}3 “ }u0}3.

Thus,

sup
tą0
}tα{2et∆u0}q ď }u0}3,

which implies tα{2et∆u0 P Cpr0,8q;PL
3pR3qq. Similarly, from the heat kernel estimates and

since the heat semi-group et∆ is strongly continuous in LppRnq where 1 ă p ă 8, we have

}tα{2et∆u0}q ď tα{2}et∆u0}q ÝÑ 0 as t ÝÑ 0.

Remark 2.2. The equivalence in norm, or more specifically, the estimate

}et∆u0}G À }u0} 9B´α,8q
,
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plays a very important role in obtaining the global well-posedness of solutions. More precisely,

this implies that if we choose a sufficiently small initial data in 9B´α,8q pR3q, then }et∆u0}G

also remains sufficiently small and Picard’s theorem yields global solutions. In Kato’s proof

presented in Chapter 1, we applied a splitting procedure on u0 P L
3pR3q to apply Picard’s

theorem. Consequently, we obtained global mild solutions provided we had sufficiently small

initial data in L3pR3q, instead.

Lemma 2.7. The bilinear operator Bpu, vqptq defined by

Bpu, vqptq :“ ´

ż t

0

ept´sq∆P∇ ¨ pub vqpsq ds, (2.10)

is bicontinuous in GˆG ÝÑ G.

Proof. For the sake of simplicity, we shall prove the bicontinuity of the bilinear operator

Bpu, vqptq in the scalar case, which can be expressed as

Bpf, gqptq “ ´

ż t

0

1

pt´ sq´2
Θ

ˆ

¨
?
t´ s

˙

˚ pfgqpsq ds,

where f “ fpt, xq and g “ gpt, xq are scalar fields in G and Θ “ Θpxq has Fourier transform

given by

Θ̂pξq “ |ξ|e´|ξ|
2

,

and as such, is an analytic function which is Op|x|´4q at infinity. In other words, we are

treating et∆P∇ ¨ pu b vq as a single convolution operator unlike what was done in Chapter

1. By Young’s inequality (here, the condition q ď 6 appears) followed by the substitution

x{
?
t´ s ÝÑ x in order to compute }Θ}r, we obtain

}Bpf, gqptq}3 ď

ż t

0

1

pt´ sq2

›

›

›
Θ

ˆ

¨
?
t´ s

˙

›

›

›

r1
}fpsqgpsq}q{2 ds

ď

ˆ
ż t

0

pt´ sq´2`3{p2r1q}fpsqgpsq}q{2 ds

˙

}Θ}r1

where 1` 1
3
“ 1

r1
` 1

q{2
. Then, Hölder’s inequality implies

}Bpf, gqptq}3 ď

ˆ
ż t

0

pt´ sq´2`3{p2r1qs´α ds

˙

}Θ}r sup
tą0

tα{2}fptq}q sup
tą0

tα{2}gptq}q

À sup
tą0

tα{2}fptq}q ¨ sup
tą0

tα{2}gptq}q (2.11)

Similarly, Young’s inequality implies

}Bpf, gqptq}q ď

ˆ
ż t

0

pt´ sq´2`3{p2r2q}fpsqgpsq}q{2 ds

˙

}Θ}r2 ,
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where 1` 1
q
` 1

r2
` 2

q
. By Hölder’s inequality, we obtain

}Bpf, gqptq}q ď

ˆ
ż t

0

pt´ sq´2`3{2r2s´α ds

˙

}Θ}r2 sup
tą0

tα{2}fptq}q ¨ sup
tą0

tα{2}gptq}q

ď
loomoon

s̃“s{t

ˆ
ż t

0

t´2`3{p2r2qp1´ s̃q´2`3{p2r2qt´αs´αt ds̃

˙

}Θ}r2 sup
tą0

tα{2}fptq}q ¨ sup
tą0

tα{2}gptq}q

À t´1`3{p2r2q´α sup
tą0

tα{2}fptq}q ¨ sup
tą0

tα{2}gptq}q

À t´α{2 sup
tą0

tα{2}fptq}q ¨ sup
tą0

tα{2}gptq}q,

where we used the fact that ´1` 3{p2r2q “ α{2. This implies

tα{2}Bpf, gqptq}q À sup
tą0

tα{2}fptq}q ¨ sup
tą0

tα{2}gptq}q. (2.12)

Hence, the estimates (2.11) and (2.12), in general, imply that

}Bpu, vqptq}G À }u}G}v}G for any u, v P G.

Now, the the bilinear estimates can be easily applied to show that

lim
tÝÑ0

tα{2}Bpf, gqptq}q “ 0,

whenever

lim
tÝÑ0

tα{2}fptq}q “ lim
tÝÑ0

tα{2}gptq}q “ 0.

Furthermore, we can also show that if the latter conditions hold, then

lim
tÝÑ0

}Bpf, gqptq}3 “ 0.

In particular, this convergence property is an important ingredient in our proof of the main

theorem since it guarantees any solution upt, xq P G of the integral equation (2.2) with

solenoidal initial data u0 P L
3pR3q is unique in G and tends to u0 in the strong topology of

L3pR3q.

Proof of Theorem 2.2. The theorem follows directly from Proposition 2.1 and the previ-

ous lemmas.

2.1.5 Proof of the local existence theorem in super-critical space

For completeness sake, we establish the bilinear estimates for the critical space Cpr0,8q;LqpR3qq,

q ą 3. Hence, the existence and uniqueness of mild solutions follow from Proposition 2.1

without resorting to any auxiliary subspace as in the critical case. We show the bicontinuity
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of the bilinear operator B : X ˆ X ÝÑ X where X “ Cpr0,8q;LqpR3qq. As before, we

establish the bilinear estimates by considering the scalar case of the bilinear operator. By

Young’s inequality followed by the substitution x{
?
t´ s ÝÑ x, we obtain

}Bpf, gqptq}q ď

ż t

0

1

pt´ sq2

›

›

›
Θ

ˆ

¨
?
t´ s

˙

›

›

›

r
}fpsqgpsq}q{2 ds

ď

ˆ
ż t

0

pt´ sq´2`3{p2rq
}fpsqgpsq}q{2 ds

˙

}Θ}r

where 1` 1
q
“ 1

r
` 1

q{2
, i.e., 1

q
` 1

r
“ 1. Then, Hölder’s inequality implies

}Bpf, gqptq}q ď

ˆ
ż t

0

pt´ sq´2`3{p2rq ds

˙

}Θ}r sup
tą0
}fptq}q ¨ sup

tą0
}gptq}q

ď

ˆ
ż t

0

pt´ sq´2`3{2´3{p2qq ds

˙

}Θ}r sup
tą0
}fptq}q ¨ sup

tą0
}gptq}q

À

ˆ
ż t

0

pt´ sq´1{2´3{p2qq ds

˙

sup
tą0
}fptq}q ¨ sup

tą0
}gptq}q

À sup
tą0
}fptq}q ¨ sup

tą0
}gptq}q, (2.13)

where the integral in the estimate converges since 1
2
` 3

2q
ă 1 whenever q ą 3. Hence, we

have shown the following.

Lemma 2.8. Let 3 ă q ď 8 be fixed. For any T ą 0 and any functions fptq, gptq P

Cpr0, T q;LqpR3qq, then the bilinear term Bpf, gqptq also belongs to Cpr0, T q;L3pR3qq and we

have

sup
0ătăT

}Bpf, gqptq}q À
T p1´3{qq{2

1´ 3{q
sup

0ătăT
}fptq}q sup

0ătăT
}gptq}q.

As a consequence, we obtain the following existence result.

Theorem 2.4. Let 3 ă q ď 8 be fixed. For any u0 P PL
qpR3q, there exists a T “ T p}u0}qq

such that the Navier–Stokes equations has a unique solution in Cpr0, T q;PLqpR3qq.

Remark 2.3. It is still an open question whether the solution in the super-critical setting

are global and the non-invariance of the Lq norm for q ‰ 3 ensures that such a global result

would not depend on the size of the initial data, }u0}q.

Remark 2.4. Notice that the local well-posedness for the Navier–Stokes equations still holds

for the super-critical case when q “ 8; however, some modifications are needed since L8pR3q

is not separable and therefore the heat semi-group is not strongly continuous as t ÝÑ 0. (cf.

Section 3.3 in [4] for further details).
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2.2 The Cannone–Meyer–Planchon Theorem

This section states and proves the Cannone–Meyer–Planchon Theorem, which is a global

well-posedness result for the Navier–Stokes equations and is closely related to the previous

well-posedness results of T. Kato and M. Cannone. This theorem, however, achieves global

well-posedness for small initial data in the typical scale invariant space 9B
´1`3{q,8
q pR3q but, in-

stead, the fixed point argument is formulated in an auxiliary subspace of L8pr0,8q; 9B
´1`3{q,8
q pR3qq.

Thus, it suffices to verify the continuity of the bilinear terms under this setting, and this

argument relies on ideas from Littlewood–Paley theory and the smoothing effect of the heat

kernel.

First we recall an important property from [1], which describes the action of the semigroup

of the heat flow on distributions with Fourier transforms supported on an annulus.

Lemma 2.9 (Lemma 2.4 in [1]). Let C be an annulus. Then there exist positive constants

c and C such that for any q P r1,8s and any couple pt, λq of positive real numbers, we have

that

if supp pu Ă λC then, }et∆u}Lq ď Ce´ctλ
2

}u}Lq .

From this, we have that } 9∆je
t∆u0}Lq ď Ce´ct2

2j
} 9∆ju0}Lq . Integrating this in time yields

} 9∆je
t∆u0}L1pLqq ď

C

22j
2´jp´1`3{qq

}u0} 9B
´1`3{q,8
q

. (2.14)

This observation leads to the following definition.

Definition 2.3. For 1 ď q ď 8, we denote by Eq the space of functions u in L8pr0,8q; 9B
´1`3{q,8
q pRnqq

for which

}u}Eq
.
“ sup

j
2jp´1`3{qq

} 9∆ju}L8pLqq ` sup
j

22j2jp´1`3{qq
} 9∆ju}L1pLpq ă 8.

Note that estimate (2.14) implies that }et∆u0}Eq ď C}u0} 9B
´1`3{q,8
q

.

We have the following main result.

Theorem 2.5. Let q P r1,8q. There exists a constant δ such that the integral equation (2.2)

has a unique solution u in B2δp0q Ă Eq whenever }u0} 9B
´1`3{q,8
q

ď δ.

This follows from the standard fixed point argument provided we have the following

bilinear estimate on Eq.

Lemma 2.10. There exists a constant C such that for any q P r1,8q,

}Bpu, vq}Eq ď C ¨ q}u}Eq}v}Eq .

Here Bpu, vq denotes the usual bilinear operator from the Navier–Stokes equations.

Proof of Lemma 2.10. We omit the proof but refer the reader to Chapter 5 page 234 in

[1].
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CHAPTER 3

On the breakdown of smooth solutions for the 3-D incompressible

Euler equations

3.1 Introduction

This chapter provides notes from Beale, Kato, and Majda’s [2] result on the finite-time

blowup of smooth solutions to the incompressible Euler equations in R3 (an analogous result

does hold for the incompressible Navier–Stokes equations). We shall consider the initial

value problem to the three dimensional incompressible Euler equations

"

Btu` pu ¨∇qu`∇p “ 0, t ą 0, x P R3,
∇ ¨ u “ 0.

(3.1)

It turns out that a necessary condition for the finite-time blowup of classical solutions of (3.1)

is directly related to the time integral of the supremum norm of the vorticity, ω :“ ∇ ˆ u.

Namely, if a solution of the Euler equations is initially “smooth” and loses its regularity at

some later time, then the supremum of the vorticity necessarily grows without bound as time

approaches a critical value T˚. An equivalent reformulation of this statement is that if the

vorticity remains bounded, then a smooth solution persists.

3.2 Main Results

Theorem 3.1. Let u be a solution of the Euler equations (3.1) and

u P Cpr0, T s;Hs
q X C1

pr0, T s;Hs´1
q. (3.2)
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Suppose that there is a time T˚ such that the solution cannot be continued in the class (3.2)

to T “ T˚ and assume T˚ is the first such time. Then

ż T˚

0

}ωptq}L8 dt “ 8, (3.3)

and in particular,

lim sup
tÑT´˚

}ωptq}L8 “ 8.

An immediate consequence of this theorem is the following result.

Corollary 3.1. For some solution of the Euler equations (3.1), suppose there are constants

M0 and T˚ so that on any interval r0, T s of existence of the solution in the class (3.2), with

T ă T˚, the vorticity satisfies the a priori estimate

ż T

0

}ωptq}L8 dt ďM0. (3.4)

Then the solution can be continued in the class (3.2) to the interval r0, T˚s.

Proof of Theorem 3.1. First, we show that the assumptions imply that

lim sup
tÑT˚

}uptq}Hs “ 8. (3.5)

To see this, assume the contrary. That is, }uptq}Hs ď C0 for some positive constant C0 and

all t ă T˚. By the local well-posedness, we can start a solution at any time t1 with initial

value upt1q, and this solution will be regular for t1 ď t ď t1 ` T0pC0q, with T0 independent

of t1. If t1 ą T˚ ´ T0, then we have extended the original solution past the time T˚, which

contradicts our choice for T˚.

To prove the theorem, we claim that if

ż T˚

0

}ωptq}L8 dt ”M0 ă 8, (3.6)

then

}uptq}Hs ď C0 for t ă T˚,

for some positive constant C0, thus contradicting (3.5).

Step 1: We estimate ωptq in L2. Taking the curl in (3.1) leads to the vorticity equation

ωt ` u ¨∇u “ ω ¨∇u. (3.7)

Recall the important property that

ppu ¨∇qw,wq “ 0 at least for w P H1,
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which follows from integration by parts and the divergence-free condition on the velocity u.

Thus, if we multiply (3.7) by ω and integrate, we get

1

2

d

dt
}ωptq}2L2 “ pω ¨∇u, ωq. (3.8)

The velocity u is determined from the vorticity ω by the relation

u “ ´∇ˆ p∇´1ωq.

Therefore, the Fourier transforms of ∇u and ω satisfy x∇upξq “ Spξqpωpξq where S is a matrix

bounded independent of ξ. Thus, we have

}∇u}L2 ď C}ω}L2 .

By inserting this into (3.8) and using the Cauchy–Schwarz inequality, we arrive at

d

dt
}ωptq}2L2 ď 2Cmptq}ωptq}2L2 , (3.9)

where mptq “ }ωptq}L8 , so that

}ωptq}L2 ď }ωp0q}L2 exp
!

C

ż t

0

mpτq dτ
)

,

or

}ωptq}L2 ďM1}ωp0q}L2 (3.10)

with M1 “ exppCM0q.

Step 2: Next, we derive energy estimates for (3.1) in terms of }∇u}L8 .

Let α be a multi-index with |α| ď s. Set v “ Dα
xu. By applying the usual differential

operator Dα
x to (3.1), we obtain for v the equation

vt ` u ¨∇v `∇q “ ´F, (3.11)

where q “ Dαp and

F “ Dα
pu ¨∇uq ´ u ¨∇Dαu.

We estimate F by recalling the well-known elementary inequality

}Dα
pfgq ´ fDαg}L2 ď C p}f}Hs}g}L8 ` }∇f}L8}g}Hs´1q

by taking f “ u and g “ ∇u so that

}Dα
pu ¨∇uq ´ u ¨Dα∇u}L2 ď C p}u}Hs}∇u}L8 ` }∇u}L8}∇u}Hs´1q .

From this, we have that

}F }L2 ď C}∇u}L8}u}Hs .
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Applying standard methods in obtaining energy estimates for (3.11) yields

1

2

d

dt
}uptq}2Hs ď C}∇u}L8}u}2Hs ,

which yields

}uptq}Hs ď }up0q}Hs exp
!

C

ż t

0

}∇upτq}L8 dτ
)

. (3.12)

Step 3: We complete the proof by invoking the following time-independent estimate for

}∇u}L8 in terms of bounds on ω and slight dependence on a higher norm of u,

}∇u}L8 ď C
!

1` p1` log` }u}L3q}ω}L8 ` }ω}L2

)

, (3.13)

where log` a “ log a if a ě 1 and log` a “ 0 otherwise. By virtue of (3.6) and (3.10), we

can express inequality (3.13) as

}∇u}L8 ď C
!

1`mptq logp}u}L3 ` eq
)

. (3.14)

Here and below, C denotes a positive constant depending on M0 and T˚.

Set yptq “ }uptq}Hs ` e. By combining (3.12) and (3.14), we obtain

yptq ď yp0q exp
!

C

ż t

0

p1`mpτq log ypτqq dτ
)

,

and if zptq “ log yptq,

zptq ď zp0q ` C

ż t

0

p1`mpτqzpτqq dτ.

Hence, by Gronwall’s inequality, zptq is bounded by a constant depending on M0, T˚, and

}u0}Hs . This completes the proof of the theorem.
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CHAPTER 4

Littlewood–Paley theory and the Besov and Triebel–Lizorkin spaces

In this Chapter, we introduce the Littlewood-Paley decomposition, the paradifferential cal-

culus and related topics. We use these tools for defining and characterizing the Besov and

Triebel–Lizorkin spaces. For more detailed accounts of the theory presented in this chapter,

the reader is referred to [1, 6, 7, 9].

4.1 Littlewood–Paley theory

4.1.1 Bernstein-type Lemmas

Lemma 4.1. Let C be an annulus and B a ball. A constant C such that for any non-negative

integer k, any p, q P r1,8s with q ě p, and any function u P LppRnq, we have

If supp pu Ă λB, then }Dku}Lq
.
“ sup
|α|“k

}B
αu}Lq ď Ck`1λk`np

1
p
´ 1
q
q
}u}Lp ,

If supp pu Ă λC, then C´pk`1qλk}u}Lp ď }D
ku}Lp ď Ck`1λk}u}Lp .

Lemma 4.2. Let C be an annulus, m P R, and k “ 2r1` n{2s1 Let σ be a k-times differen-

tiable function on Rnzt0u such that for any α P Nn with |α| ď k, there exists a constant Cα
such that

for all ξ P Rn, |Bασpξq| ď Cα|ξ|
m´|α|.

Moreover, there exists a constant C, depending only on the constants Cα, such that for any

p P r1,8s and any λ ą 0, we have, for any function u P Lp with Fourier transform supported

in λC,

}σpDqu}Lp ď Cλm}u}Lp ,

1ris denotes the integer part of i.
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where we define

σpDqu
.
“ F´1

pσpuq.

4.1.2 Dyadic partition of unity

Proposition 4.1. Let C be the annulus tξ P Rn | 3{4 ď |ξ| ď 8{3u. There exist radial

functions pχ and pϕ, valued in the interval r0, 1s, belonging respectively to DpB4{3p0qq and

DpCq, and such that

for all ξ P Rn, pχpξq `
ÿ

jě0

pϕp2´jξq “ 1, (4.1)

for all ξ P Rn
zt0u,

ÿ

jě0

pϕp2´jξq “ 1, (4.2)

if |j ´ j1| ě 2, then supp pϕp2´j¨q X supp pϕp2´j¨q “ H, (4.3)

if j ě 1, then supp χX supp pϕp2´j¨q “ H, (4.4)

the set C̃ .
“ B2{3p0q ` C is an annulus, and we have

if |j ´ j1| ě 5, then 2j
1 C̃ X 2jC “ H. (4.5)

Proof. Fix α to be in p1, 4{3q and denote by C 1 “ tξ P Rn |α´1 ď |ξ| ď 2αu Ă C. Choose a

smooth radial function θ valued in r0, 1s, supported in C, and θ ” 1 in a neighborhood of C 1.
The important point is the following: for any couple pj, j1q, we have

|j ´ j1| ě 2 ùñ 2j
1C X 2jC “ H. (4.6)

Clearly, if 2j
1C X 2jC ‰ H and j1 ě j, then 2j

1

ˆ 3{4 ď 4 ˆ 2j`1{3, which implies that

j1 ´ j ď 1. Now, let

Spξq “
ÿ

jPZ

θp2´jξq.

Thanks to (4.6), this sum is locally finite on the set Rnzt0u. Thus, the function S is smooth

on Rnzt0u. As α ą 1, we have
ď

jPZ

2jC 1 “ Rn
zt0u.

Since the function θ is non-negative and has value 1 near C 1, it follows from the above covering

property that the function S is positive. We claim that pϕ
.
“ θ{S is suitable. Indeed, it is

clear that pϕ belongs to DpCq and that the function 1 ´
ř

jě0 pϕp2
´j¨q is smooth by (4.6).

Moreover, as supp θ Ă C, we have that for |ξ| ě 4{3, then

ÿ

jě0

pϕp2´jξq “ 1. (4.7)
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Thus, by setting

pχpξq “ 1´
ÿ

jě0

pϕp2´jξq,

we obtain the identities (4.1) and (4.3). Identity (4.4) is an immediate consequence of (4.6)

and (4.7).

We now prove (4.5). By definition, the annulus C̃ “ tξ P Rn | 3{4´2{3 ď |ξ| ď 8{3`2{3u,

i.e., it has center 0, small radius 1{12, and large radius 10{3. Then, it turns out that

2kC̃ X 2jC ‰ H ñ 3{4ˆ 2j ď 2k ˆ 10{3 or 1{12ˆ 2k ď 2j ˆ 8{3

from which the identity (4.5) follows. This completes the proof.

From this point on, we fix two function χ and ϕ whose Fourier transforms pχ and pϕ

satisfy the properties of the previous proposition. We now define the homogeneous and

non-homogeneous dyadic blocks and the low frequency cut-off operators.

Definition 4.1. The non-homogeneous dydadic blocks ∆j are defined by

∆ju “ 0 if j ď ´2, ∆´1u “ pχpDqu “

ż

Rn
χpx´ yqupyq dy,

and

∆ju “ pϕp2´jDqu “

ż

Rn
2jnϕp2jpx´ yqqupyq dy if j ě 0.

The non-homogeneous low frequency cut-off operators Sj are defined by

Sju “
ÿ

j1ďj´1

∆j1u.

Definition 4.2. The homogeneous dyadic blocks 9∆j and the homogeneous low frequency

cut-off operators are define for all j P Z by 2

9∆j “ pϕp2´jDqu “

ż

Rn
2jnϕp2jpx´ yqqupyq dy,

9Sju “ pχp2´jDqu “

ż

Rn
2jnχp2jpx´ yqqupyq dy.

Remark 4.1. Observe that the dyadic blocks and low frequency cut-off operators are bounded

maps from Lp into itself, and we will frequently make use of this property throughout this

chapter.

2Recall that σpDqu
.
“ F´1pσpuq.
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Obviously, we can write, at least formally, the Littlewood–Paley decompositions:

Id “
ÿ

j

∆j and Id “
ÿ

j

9∆j. (4.8)

In the non-homogeneous case, the above decomposition makes sense in S 1pRnq.

Proposition 4.2. Let u be in S 1pRnq. Then,

u “ lim
jÝÑ8

Sju in S 1pRn
q.

Proof. Note that xu ´ Sju, fy “ xu, f ´ Sjfy for all f P SpRnq and u P S 1pRnq. Therefore,

it suffices to prove that f “ limjÝÑ8 Sjf for all f P SpRnq. Because the Fourier transform

is an automorphism of SpRnq, we can alternatively prove that pχp2´j¨q pf converges to pf in

SpRnq, which follows easily.

Another somewhat related result of convergence is the following.

Proposition 4.3. Let pujqjPN be a sequence of bounded functions such that the Fourier

transform of uj is supported in 2j C̃, where C̃ is a given annulus. Assume that, for some

integer N , the sequence p2´jN}uj}L8qjPN is bounded. The series
ř

j uj then converges in

S 1pRnq.

Proof. It turns out that for all integers j and k we may write

uj “ 2´jk
ÿ

|α|“k

2jngαp2
j
¨q ˚ B

αuj.

For any test function φ in SpRnq, we then write

xuj, φy “ 2´jk
ÿ

|α|“k

xuj, 2
jn
qgαp2

j
¨q ˚ p´Bq

αφy

with qgαpxq “ gαp´xq. We then have

|xuj, φy| ď C2´jk
ÿ

|α|“k

2jN}Bαφ}L1 .

Choose k ą N , then
ř

jxuj, φy is a convergent series, the sum of which is less than C}φ}M,S
for some integer M . Thus, the forumla

xu, φy
.
“ lim

jÝÑ8

ÿ

j1ďj

xuj1 , φy

defines a tempered distribution.
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Proving the homogeneous Littlewood–Paley decomposition is more subtle. As discussed

in the previous chapter, the decomposition does not hold for non-zero polynomials, however,

it is true in S 10pRnq. Indeed, 9Sju tends uniformly to 0 as j ÝÑ ´8.

Proposition 4.4. Let pujqjPZ be a sequence of bounded functions such that the support of

puj is included in 2j C̃, where C̃ is a given annulus. Assume that, for some integer N , the

sequence p2´jN}uj}L8qjPN is bounded and that the series
ř

jă0 uj converges in L8. The series
ř

jPZ uj then converges to some u in S 1pRnq and u belongs in S 10pRnq.

Proof. By virtue of Proposition (4.3), the series
ř

jPZ uj converges to some u in S 1pRnq. We

are therefore left with prove that u belongs to S 10pRnq. We have, for some integer N0,

} 9Sj}L8 ď
›

›

›

9Sj
ÿ

j1ďj`N0

uj1
›

›

›

L8
ď C

›

›

›

ÿ

j1ďj`N0

uj1
›

›

›

L8
.

As the series
ř

jă0 uj converges in L8, the proposition is proved.

4.2 Homogeneous Besov spaces

We start with a brief introduction to the homogeneous Besov spaces (including the related

homogeneous Triebel–Lizorkin spaces) by defining such spaces and covering some of their

most fundamental properties.

4.2.1 Introduction

Definition 4.3. Let s P R and p, r P r1,8s. The homogeneous Besov space 9Bs,r
p pRnq consists

of those distributions u in S 10pRnq such that

}u} 9Bs,rp

.
“

˜

ÿ

jPZ

p2sj} 9∆ju}Lpq
r

¸
1
r

ă 8.

Similarly, we can define the homogeneous Triebel–Lizorkin spaces.

Definition 4.4. Let s P R and p, r P r1,8s. The homogeneous Triebel–Lizorkin space
9F s,r
p pRnq consists of those distributions u in S 10pRnq such that

}u} 9F s,rp

.
“

›

›

›

›

›

˜

ÿ

jPZ

p2sj| 9∆ju|q
r

¸›

›

›

›

›

Lp

ă 8.

Proposition 4.5. The spaces 9Bs,r
p pRnq and 9F s,r

p pRnq endowed with } ¨ } 9Bs,rp
and } ¨ } 9F s,rp

,

respectively, are normed spaces.
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Proof. We only prove this for the homogeneous Besov spaces since the same argument works

for the homogeneous Triebel–Lizorkin spaces. Now, it is not too difficult to check that }¨} 9Bs,rp

is a semi-norm. So, assume for some u in S 10pRnq, we have }u} 9Bs,rp
“ 0. This implies that the

support of pu is included in t0u. Thus, for any j P Z, we have 9Sju “ u, but since u belongs

in S 10pRnq, we have u “ 0. This completes the proof.

Remark 4.2. The definitions of the Besov space 9Bs,r
p pRnq and the Triebel–Lizorkin space

9F s,r
p pRnq are independent of the test function ϕ used for defining the dyadic blocks 9∆j, and

changing the function ϕ yields an equivalent norm. Namely, if ϕ̃ is another dyadic partition

of unity, then an integer N0 exists such that |j ´ j1| ě N0 implies that supp ϕ̃p2´j¨q X

supp ϕp2´j¨q “ H. Thus,

2sj}ϕ̃p2´jDqu}Lp “ 2sj
›

›

›

ÿ

|j´j1|ďN0

ϕ̃p2´jDq 9∆j1u
›

›

›

Lp

ď C2N0|s|
ÿ

j1

χr´N0,N0spj ´ j
1
q2sj

1

} 9∆j1u}Lp .

Then, the result follows from Young’s inequality.

As we have seen in our study of the Navier–Stokes equations in scale invariant function

spaces, the homogeneous Besov and Triebel–Lizorkin spaces have nice scaling properties,

which make them ideal spaces for examining global well-posedness for the Navier–Stokes

equations. Indeed, if u is a tempered distribution and we consider the tempered distribution

uN where uN
.
“ up2N ¨q, we get the following proposition.

Proposition 4.6. Consider an integer N and a distribution u P S 10pRnq and set uN
.
“ up2N ¨q.

Then }u} 9Bs,rp
is finite if and only if }uN} 9Bs,rp

is finite. Moreover, we have

}uN} 9Bs,rp
“ 2Nps´n{pq}u} 9Bs,rp

.

Remark 4.3. As we have seen already, this proposition can be easily generalized to the

following: there exists a C ą 0, depending only on s, such that for all λ ą 0, we have

C´1λs´n{p}u} 9Bs,rp
ď }upλ¨q} 9Bs,rp

ď Cλs´n{p}u} 9Bs,rp
.

Proof of Proposition (4.6). By definition of 9∆j and by the change of variable z “ 2Ny, we

get

9∆juNpxq “ 2jn
ż

Rn
ϕp2jpx´ yqqup2Nyq dy

“ 2pj´Nqn
ż

Rn
ϕp2j´Np2Nx´ zqqupzq dz

“ p 9∆j´Nuqp2
nxq.
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It turns out that } 9∆juN}Lp “ 2´N
n
p } 9∆j´Nu}Lp . We therefore conclude from this that

2sj} 9∆juN}Lp “ 2Nps´
n
p
q2spj´Nq} 9∆j´Nu}Lp ,

and the proposition follows immediately by summation.

The following is an analogue to the Sobolev embedding theorem.

Proposition 4.7. Let 1 ď p1 ď p2 ď 8 and 1 ď r1 ď r2 ď 8. Then, for any real number

s, the space 9Bs,r1
p1
pRnq is continuously embedded in 9B

s´np 1
p1
´ 1
p2
q,r2

p2 pRnq.

Proof. From the Bernstein inequalities in Lemma 4.1,

} 9∆ju}Lp2 ď C2
jnp 1

p1
´ 1
p2
q
} 9∆ju}Lp1 .

The proposition follows from this and the fact that lr1pZq is continuously embedded in

lr2pZq.

An interesting feature of homogeneous Besov spaces, in comparison with the Lebesgue

and Sobolev spaces, is that they contain homogeneous functions of negative degree. For

example, an earlier example showed the function |x|´1, which is a homogeneous function of

degree ´1, belongs in 9B
´1`n{p,8
p pRnq but does not belong in LnpRnq. In fact, we have the

more general assertion.

Proposition 4.8. Let σ P p0, nq. For any p P r1,8s, the function | ¨ |´σ belongs to

9B
n
p
´σ,8

p pRnq.

Proof. Using Proposition 4.7, it enough to prove that ρσ
.
“ | ¨ |´σ belongs to 9Bn´σ,8

1 pRnq.

To do so, we introduce a smooth compactly supported function χ which identically equal to

one near the unit ball and we write

ρσ “ ρ0 ` ρ1 with ρ0pxq
.
“ χpxq|x|´σ and ρ1pxq

.
“ p1´ χpxqq|x|´σ.

It is clear that ρ0 P L
1pRnq and ρ1 P L

qpRnq whenever q ą n{σ. This implies that ρσ belongs

to S 10pRnq. The homogeneity of the function ρσ then yields

9∆jρσ “ 2jnρσ ˚ ϕp2
j
¨q “ 2jpn`σqρσp2

j
¨q ˚ ϕp2j¨q “ 2jσp 9∆0ρσqp2

j
¨q.

Therefore, } 9∆jρσ}L1 “ 2jpσ´nq} 9∆0ρσ}L1 , which reduces the problem to proving that the

function 9∆0ρσ is in L1pRnq. As ρ0 is in L1pRnq, 9∆0ρ0 is also in L1pRnq due to the continuity

of the operator 9∆0 on Lebesgue spaces. Using Lemma 4.1, we get

} 9∆0ρ1}L1 ď Ck}D
k 9∆0ρ1}L1 ď Ck}D

kρ1}L1 .

By Leibniz’s formula, Dkρ1´p1´χqD
kρσ is a smooth compactly supported function. Then,

choosing k so that k ą n´ σ completes the proof of the proposition.
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Proposition 4.9. A constant exists which satisfies the following properties. If s1 and s2 are

real numbers such that s1 ă s2 and θ P p0, 1q, then we have, for any p, r P r1,8s and any

u P S 10pRnq,

(i)

}u} 9B
θs1`p1´θqs2,r
p

ď }u}θ9Bs1,rp
}u}1´θ9B

s2,r
p
,

(ii)

}u} 9B
θs1`p1´θqs2,1
p

ď
C

s2 ´ s1

ˆ

1

θ
`

1

1´ θ

˙

}u}θ9Bs1,8p
}u}1´θ9B

s2,8
p

.

Proof. To prove (i), we note that

2jpθs1`p1´θqs2q} 9∆ju}Lp “
´

2s1j} 9∆ju}Lp
¯θ ´

2s2j} 9∆ju}Lp
¯1´θ

.

The result follows from Hölder’s inequality.

To prove (ii), we estimate the low and high frequencies of u is a different way. Namely,

we write

}u} 9B
θs1`p1´θqθs2,1
p

“
ÿ

jďN

2jpθs1`p1´θqs2q} 9∆ju}Lp `
ÿ

jąN

2jpθs1`p1´θqs2q} 9∆ju}Lp .

By definition of the homogeneous Besov norms, we have

2jpθs1`p1´θqs2q} 9∆ju}Lp ď 2jp1´θqps2´s1q}u} 9B
s1,8
p

,

and

2jpθs1`p1´θqs2q} 9∆ju}Lp ď 2´jp1´θqps2´s1q}u} 9B
s2,8
p

,

Thus, we conclude that

}u} 9B
θs1`p1´θqs2,1
p

ď }u} 9B
s1,8
p

ÿ

jďN

2jp1´θqps2´s1q ` }u} 9B
s2,8
p

ÿ

jąN

2´jθps2´s1q

ď }u} 9B
s1,8
p

2Np1´θqps2´s1q

2p1´θqps2´s1q ´ 1
` }u} 9B

s2,8
p

2´Nθps2´s1q

1´ 2´θps2´s1q
.

From this, if we choose N such that

}u} 9B
s2,8
p

}u} 9B
s1,8
p

ď 2Nps2´s1q ă 2s2´s1
}u} 9B

s2,8
p

}u} 9B
s1,8
p

,

we obtain inequality in (ii).

The next lemma provides a useful criterion for determining whether the sum of a series

belongs to a homogeneous Besov space.
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Lemma 4.3. Let C 1 be an annulus and pujqjPZ be a sequence of functions such that

supp puj Ă 2jC 1 and
›

›

›
p2sj}uj}LpqjPZ

›

›

›

lr
ă 8.

If the series
ř

jPZ uj converges in S 1pRnq to some u in S 10pRnq, then u is in 9Bs,r
p pRnq and

}u} 9Bs,rp
ď Cpsq

›

›

›
p2sj}uj}LpqjPZ

›

›

›

lr
.

Remark 4.4. The above convergence assumption concerns pujqjă0. We note that if s, p and

r satisfy the condition

s ă
n

p
, or s “

n

p
and r “ 1, (4.9)

then, by virtue of the Bernstein inequalities (cf. Lemma 4.1), we have

lim
jÝÑ´8

ÿ

j1ăj

uj1 “ 0 in L8pRn
q.

Hence,
ř

jPZ uj converges to some u in S 1pRnq, and 9Sju ÝÑ 0 as j ÝÑ ´8. In particular,

u belongs to S 1pRnq.

Proof of Lemma 4.3. It is clear that there exists some non-zero integer N0 such that ∆j1uj “

0 for |j1 ´ j| ě N0. Thus,

} 9∆ju}Lp “
›

›

›

ÿ

|j´j1|ăN0

9∆j1uj

›

›

›

Lp
ď C

ÿ

|j´j1|ăN0

}uj}Lp .

Therefore, we obtain that

2j
1s
} 9∆j1u}Lp ď C

ÿ

|j´j1|ďN0

2sj}uj}Lp .

We deduce from this that

2sj} 9∆ju}Lp ď
´

pckq ˚ pdlq
¯

j
with ck “ Cχr´N0,N0spkq and dl “ 2sl}ul}Lp .

Then, by Young’s inequality (cf. Lemma 1.4 page 5 in [1]), we obtain

}u} 9Bs,rp
ď C

›

›

›
p2sj}uj}LpqjPZ

›

›

›

lr
.

As u belongs to S 10pRnq, this proves the lemma.

The previous lemma allows us to establish the following important topological properties

of homogeneous Besov spaces.
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Theorem 4.1. Let s1, s2 P R and p1, p2, r1, r2 P r1,8s. Assume that s1, p1 and r1 satisfy

(4.9). The space
9Bs1,r1
p1

pRn
q X 9Bs2,r2

p2
pRn

q

endowed with the norm } ¨ } 9B
s1,r1
p1

`} ¨ } 9B
s2,r2
p2

is then complete and satisfies the Fatou property:

If puiqiPN is a bounded sequence in 9Bs1,r1
p1

pRnq X 9Bs2,r2
p2

pRnq, then there exist an element u P
9Bs1,r1
p1

pRnq X 9Bs2,r2
p2

pRnq and a subsequence uψpiq such that

(i) limiÝÑ8 uψpiq “ u in S 1pRnq;

(ii) for k “ 1, 2, }u} 9B
sk,rk
pk

ď C lim infiÝÑ8 }uψpiq} 9B
sk,rk
pk

.

Proof. We first prove the Fatou property. By the Bernstein inequalities, for any j P Z, the

sequence p 9∆junqnPN is bounded in Lmintp1,p2upRnqXL8pRnq. By Cantor’s diagonal argument,

we can extract a subsequence puψpiqqnPN and a sequence pũjqjPZ of C8 functions with Fourier

transform supported in 2jC such that, for any j P Z, φ P S, and k “ 1, 2,

lim
iÝÑ8

x 9∆juψpiq, φy “ xũj, φy and }ũj}Lpk ď lim inf
iÝÑ8

} 9∆jui}Lpk .

The sequence,
´

p2sj} 9∆juψpiq}Lpk qj

¯

iPN
,

is bounded in lrkpZq. Hence, there exists an element pc̃kj qjPZ of lrkpZq for which (up to an

omitted extraction) we have for any sequence pdjqjPZ non-negative real numbers different

from 0 for only a finite number of indices j,

lim
iÝÑ8

ÿ

jPZ

2skj} 9∆juψpiq}Lpkdj “
ÿ

jPZ

c̃kjdj,

and

}pc̃kj qj}lrk ď lim inf
iÝÑ8

}uψpiq} 9B
sk,rk
pk

.

Passing to the limit in the sum and using Lemma 1.2 page 2 of [1] with X “ Z and µ the

counting measure on Z gives that p2skj}ũj}Lpk qj belongs to lrkpZq. From the definition of ũj,

we conclude that F ũj is supported in the annulus 2jC where C is defined as in Proposition

4.1. As s1, p1 and r1 satisfy (4.9), Lemma 4.3 guarantees that the series
ř

jPZ ũj converges

to some u in S 10pRnq. Given the property (4.3), we have, for all M ă N and φ P SpRnq,
C

N
ÿ

j“M

9∆ju, φ

G

“

C

N
ÿ

j“M

ÿ

|j1´j|ď1

9∆jũj1 , φ

G

.

Hence, by definition of ũj and again by property (4.3), we have

N
ÿ

j“M

9∆ju “ lim
iÝÑ8

N
ÿ

j“M

9∆juψpiq in S 1pRn
q.
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Since the condition (4.9) is satisfies by s1, p1 and r1 and puψpiqqnPN is bounded in 9Bs1,r1
p1

pRnq,

Lemma 4.1 ensures that 9SMuψpiq tends uniformly to 0 when M goes to ´8. Similarly,

pId ´ 9SNquψpiq tends uniformly to 0 in, say, 9Bs2´1,r2
p2

pRnq. Hence, u is indeed the limit of

puψpiqqiPN in S 1pRnq, which completes the proof of the Fatou property.

Now, we check 9Bs1,r1
p1

pRnqX 9Bs2,r2
p2

pRnq is complete. Consider the Cauchy sequence puiqiPN,

which is of course bounded. Hence, there exists some u in 9Bs1,r1
p1

pRnq X 9Bs2,r2
p2

pRnq and a

subsequence puψpiqqiPN which converges to u in S 1pRnq. Using the fact that for any ε ą 0, an

integer npεq exists such that if n ě m ě npεq, then

}uψpmq ´ uψpnq} 9B
s1,r1
p1

` }uψpmq ´ uψpnq} 9B
s2,r2
p2

ă ε,

and the Fatou property ensures that for all m ě npεq,

}uψpmq ´ u} 9B
s1,r1
p1

` }uψpmq ´ u} 9B
s2,r2
p2

ă Cε.

Hence, the subsequence puψpiqqiPN tends to u in 9Bs1,r1
p1

pRnq X 9Bs2,r2
p2

pRnq and this completes

the proof of the theorem.

Remark 4.5. If s ą n{p or s “ n{p and r ą 1, then 9Bs,r
p pRnq is no longer a Banach space.

This is due to a breakdown of convergence for low frequencies, the so-called infrared diver-

gence. There is a way to modify the definition of homogeneous Besov spaces so as to obtain a

Banach space, regardless of the regularity index s. This is called realizing homogeneous Besov

spaces. It turns out that realizations coincide with our definition when s ă n{p or s “ n{p

and r “ 1. In the other cases, however, realizations are defined up to a polynomial whose

degree depends on s ´ n{p and r. Unfortunately, dealing with partial differential equations

in such spaces are quite difficult and tedious.

For negative indices of regularity, i.e., s ă 0, homogeneous Besov spaces may be charac-

terized in terms of the low frequency cut-off operators 9Sj.

Proposition 4.10. Let s ă 0, p, r P r1,8s, and let u be a distribution in S 10pRnq. Then u

belongs in 9Bs,r
p pRnq if and only if

p2sj} 9Sju}LpqjPZ P l
r
pZq.

Moreover, for some constant C depending only on n, we have

C´|s|`1
}u} 9Bs,rp

ď

›

›

›
p2sj} 9Sju}Lpqj

›

›

›

lr
ď C

ˆ

1`
1

|s|

˙

}u} 9Bs,rp
.

Proof. We write

2sj} 9∆ju}Lp ď 2sjp} 9Sj`1u}Lp ` } 9Sju}Lpq

ď 2´s2spj`1q
} 9Sj`1u}Lp ` 2sj} 9Sju}Lp .
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This proves the left inequality. To prove the right inequality, we write

2sj} 9Sju}Lp ď 2sj
ÿ

j1ďj´1

} 9∆j1u}Lp

ď
ÿ

j1ďj´1

2spj´j
1q2sj

1

} 9∆j1u}Lp .

Since s ă 0, the result follows by convolution.

4.2.2 Comparison and inequalities between Besov and Lebesgue
spaces

In what follows, we provide some useful embeddings of homogeneous Besov spaces into

Lebesgue spaces, and vice versa. We omit proofs but refer readers to Chapter 2.5 in [1].

Proposition 4.11. For any p, q P r1,8s such that p ď q, the space 9B
n
p
´n
q
,1

p pRnq is continu-

ously embedded in the space C0pRnq of continuous functions vanishing at infinity. In addition,

for all q P r1,8s, the space LqpRnq is continuously embedded in the space 9B0,8
q pRnq, and the

space M of bounded measures on Rn is continuously embedded in 9B0,8
1 pRnq.

The next theorem compares homogeneous Besov spaces with regularity index s “ 0 and

third index r “ 2 to Lebesgue spaces.

Theorem 4.2. For any p P r2,8q, 9B0,2
p pRnq is continuously included in LppRnq and Lp

1

pRnq

where p1 is the Hölder conjugate of p, is continuously included in 9B0,2
p1 pRnq.

Theorem 4.3. For any p P r1, 2s, the space 9B0,p
p pRnq is continuously included in LppRnq,

and Lp
1

pRnq is continuously included in 9B0,p1

p1 pRnq.

The following theorem may be thought of as a refinement of the classical Sobolev em-

bedding theorem.

Theorem 4.4. Let 1 ď p ă q ă 8 and let α be a positive real number. A constant C exists

such that

}f}Lq ď C}f}1´θ
9B´α,88

}f}θ9Bs,pp ,

where s “ α
´

q
p
´ 1

¯

and θ “ p
q
.

4.2.3 Heat flow characterization of homogeneous Besov and Triebel–
Lizorkin spaces

For regularity index s ă 1, there is a useful characterization of the Besov and Triebel–

Lizorkin spaces using the heat semi-group operator et∆. In the following two propositions,

the usual convention for when p “ 8 or r “ 8 in the norms should be understood.
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Proposition 4.12. Let 1 ď p, r ď 8 and s ă 1, then the quantities

˜

ÿ

jPZ

p2sj}∆ju}pq
r

¸
1
r

and
ˆ
ż 8

0

pt´s}et∆u}pq
r dt

t

˙
1
r

are equivalent and will be referred to by }u} 9Bs,rp
.

Proposition 4.13. Let 1 ď r ď 8, 1 ď p ă 8 and s ă 1, then the quantities

›

›

›

›

›

˜

ÿ

jPZ

p2sj|∆ju|q
r

¸
1
r
›

›

›

›

›

p

and
›

›

›

›

›

ˆ
ż 8

0

pt´s|et∆u|qr
dt

t

˙
1
r ›
›

›

p

are equivalent and will be referred to by }u} 9F s,rp
.

4.3 Homogeneous Paradifferential calculus

This section introduces the paradifferential calculus. Namely, we consider Bony’s decompo-

sition for the product of tempered distributions and how this product acts on homogeneous

Besov spaces. Let u and v be tempered distributions in S 10pRnq. We have

u “
ÿ

j1

9∆j1u and v “
ÿ

j

9∆jv,

then, at least formally,

uv “
ÿ

j1,j

9∆j1u 9∆jv.

Paradifferential calculus is a mathematical tool for splitting the above sum into three parts.

• The first part concerns the indices pj1, jq for which the size of supp Fp 9∆j1uq is small

compared to the size of supp Fp 9∆jvq, i.e., j1 ď j´N0 for some suitable positive integer

N0.

• The second part contains indices corresponding to those frequencies of u which are

large compared to the frequencies of v, i.e., j1 ě j `N0.
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• The last part we keep the indices pj, j1q for which supp Fp 9∆j1uq and supp Fp 9∆jvq have

comparable sizes, i.e., |j ´ j1| ď N0.

The suitable choice for N0 depends on the assumptions made on the support of the function

pϕ used in the definition of the dyadic blocks. Hereafter, we shall always assume that ϕ is

chosen according to Proposition 4.1 so that we have N0 “ 1. This leads to the following

definition.

Definition 4.5. The homogeneous paraproduct of v by u is defined as follows:

9Tuv
.
“
ÿ

j

9Sj´1u 9∆jv.

The homogeneous remainder of u and v is defined by

9Rpu, vq
.
“

ÿ

|k´j|ď1

9∆ku 9∆jv.

Remark 4.6. It can be checked that 9Tuv makes sense in S 1pRnq whenever u and v are in

S 10pRnq and that 9T : pu, vq ÝÑ 9Tuv is a bilinear operator. Additionally, 9R : pu, vq ÝÑ 9Rpu, vq

is also a bilinear operator when restricted to sufficiently smooth distributions.

The motivation for considering 9T and 9R is that, at least formally, the celebrated Bony

decomposition holds, i.e.,

uv “ 9Tuv ` 9Tvu` 9Rpu, vq.

In order to understand how the product operates in Besov spaces, we need to study the

continuity properties of the operators 9T and 9R.

Remark 4.7. To simplify the presentation, it should be understood hereafter that whenever

expressions 9Tuv and 9Rpu, vq appears, the series with general terms

9Sj´1
9∆jv or

ÿ

|ν|ď1

9∆ju 9∆j´νv

converges to some tempered distribution in S 10pRnq.

Theorem 4.5. There exists a constant C such that for any s P R and any p, r P r1,8s, we

have for any pu, vq P L8pRnq ˆ 9Bs,r
p pRnq,

} 9Tuv} 9Bs,rp
ď C1`|s|

}u}L8}v} 9Bs,rp
.

Moreover, for any ps, tq P R ˆ p´8, 0q and any p, r1, r2 P r1,8s,we have for any pu, vq P
9Bt,r1
8 pRnq ˆ 9Bs,r2

p pRnq,

} 9Tuv} 9Bs`t,rp
ď
C1`|s`t|

´t
}u} 9B

t,r1
8
}v} 9B

s,r2
p

with
1

r
“ min

!

1,
1

r1

`
1

r2

)

.
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Remark 4.8. By virtue of Lemma 4.3 and the remark that follows it, the hypothesis of

convergence is satisfied whenever ps, p, rq or ps` t, p, rq satisfies (4.9).

Proof of Theorem 4.5. According to (4.5), Fp 9Sj´1
9∆jvq is supported in 2j C̃. Thus, we are

left with proving the appropriate estimate for } 9Sj´1
9∆jv}Lp . Lemma 4.1 and Proposition 4.10

yield that for any j P Z and t ă 0,

} 9Sj´1u}L8 ď C}u}L8 and } 9Sj´1u}L8 ď
C

´t
cj,r12

´jt
}u} 9B

t,r1
8
, (4.10)

where pcj,r1qjPZ denotes an element of the unit sphere of lr1pZq. Using Lemma 4.3, the

estimates concerning the paraproducts are proved.

Now we examine the behavior of the remainder operator 9R; however, we have to consider

terms of the type 9∆ju 9∆jv, the Fourier transforms of which are not supported in annuli, but

rather in balls of the type 2jB. Thus, to prove that the remainder operator is bounded in

Besov spaces, we need the following lemma.

Lemma 4.4. Let B be a ball in Rn, s is a positive real number, and p, r P r1,8s. A constant

C exists which satisfies the following. Let pujqjPZ be a sequence of smooth functions such

that

supp puj Ă 2jB and
›

›

›
p2sj}uj}Lpq

›

›

›

lr
ă 8.

We assume that the series
ř

jPZ uj converges to u in S 10pRnq. We then have

u P 9Bs,r
p pRn

q and }u} 9Bs,rp
ď
C

s

›

›

›
p2sj}uj}Lpqj

›

›

›

lrpZq
.

Remark 4.9. Thanks to Lemma 4.4 and the remark that follows it, the hypothesis of con-

vergence is satisfied whenever s, p and r satisfy condition (4.9).

Proof of Lemma 4.4. As C is annulus and B is a ball, an integer N1 exists such that if

j1 ě j `N1, then 2j
1C X 2jB “ H. So, if j1 ě j `N1, then the Fourier transform of 9∆j1uj,

and thus ∆j1uj, is equal to 0. Hence, we may write

} 9∆j1u}Lp ď
ÿ

jąj1´N1

} 9∆j1uj}Lp

ď C
ÿ

jąj1´N1

}uj}Lp .

Therefore, we have that

2sj
1

} 9∆j1u}Lp ď
ÿ

jąj1´N1

2sj
1

}uj}Lp

ď C
ÿ

jąj1´N1

2spj
1´jq2sj}uj}Lp .

Since s is positive, applying Young’s inequality for series completes the proof of the lemma.
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Remark 4.10. Lemma 4.4 indeed fails if s “ 0. To see this, fix a non-zero function f P

LppRnq spectrally supported in some ball B, and a non-negative real α such that αr ą 1. Set

uj “ j´αf for j ě 1, and uj “ 0 otherwise. It is clear that for all j P Z, supp puj Ă 2jB

and
›

›

›
p}uj}LpqjPN

›

›

›

lr
ă 8. If r ą 1, then we can additionally set α ă 1 so that the series

ř

j uj diverges in S 1pRnq. If r “ 1, then the series converges to a non-zero multiple of f .

As 9B0,1
p pRnq is a proper subspace of LppRnq, the function f need not be in 9B0,1

p pRnq, so the

lemma also fails in this case.

With the above lemma, we are ready to state and prove a resulting concerning the

continuity of the remainder operator.

Theorem 4.6. A constant C exists which satisfies the following inequalities. Let s1, s2 P R
and p1, p2, r1, r2 P r1,8s. Assume that

1

p
.
“

1

p1

`
1

p2

ď 1 and
1

r
.
“

1

r1

`
1

r2

ď 1.

If s1 ` s2 is positive, then we have, for any pu, vq P 9Bs1,r1
p1

pRnq ˆ 9Bs2,r2
p2

pRnq,

} 9Rpu, vq} 9B
s1`s2,r
p

ď
C |s1`s2|`1

s1 ` s2

}u} 9B
s1,r1
p1

}v} 9B
s2,r2
p2

.

If r “ 1 and s1 ` s2 ě 0, we have for any pu, vq P 9Bs1,r1
p1

pRnq ˆ 9Bs2,r2
p2

pRnq,

} 9Rpu, vq} 9B
s1`s2,8
p

ď C |s1`s2|`1
}u} 9B

s1,r1
p1

}v} 9B
s2,r2
p2

.

Remark 4.11. Thanks to Lemma 4.4 and the remark that follows it, the hypothesis of

convergence is satisfied whenever ps1 ` s2, p, rq or ps1 ` s2, p,8q satisfies (4.9).

Proof of Theorem 4.6. By definition of the homogeneous remainder operator,

9Rpu, vq “
ÿ

j

Rj where Rj “
ÿ

|ν|ď1

9∆j´νu 9∆jv.

Since pϕ is supported in the annulus C, the Fourier transform of Rj is supported in 2jB24p0q.

So, by construction of the dyadic partition of unity, there exists an integer N0 such that

if j1 ą j `N0, then 9∆j1Rj “ 0. (4.11)

From this, we deduce that
9∆j1

9Rpu, vq “
ÿ

jěj1´N0

9∆j1Rj.
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We deduce from Hölder’s inequality that

2ps1`s2qj
1

} 9∆j1
9Rpu, vq}Lp ď C2ps1`s2qj

1
ÿ

|ν|ď1,jěj1´N0

} 9∆j´νu 9∆jv}Lp

ď C2ps1`s2qj
1

ÿ

|ν|ď1,jěj1´N0

} 9∆j´νu}Lp1 } 9∆jv}Lp2

ď C2´ps1`s2qpj´j
1q2s1pj´νq

ÿ

|ν|ď1,jěj1´N0

} 9∆j´νu}Lp12s2j} 9∆jv}Lp2

In the case where s1 ` s2 ě 0, we obtain the result by applying Hölder’s inequality and

Young’s inequality for series to the above estimate. In the case where r “ 1 and s1 ` s2 is

non-negative, we use the fact that

2ps1`s2qj
1

} 9∆j1
9Rpu, vq}Lp ď C

ÿ

|ν|ď1,jěj1´N0

2s1pj´νq} 9∆j´νu}Lp12s2j} 9∆jv}Lp2 ,

then take the supremum over j1 and use Hölder’s inequality for series.

With Bony’s decomposition and the above basic results, we can derive a plethora of

properties for Besov spaces. For instance, the space of bounded functions contained in

homogeneous Besov spaces forms a ring structure.

Corollary 4.1. If s P p0,8q and p, r P r1,8s satisfy (4.9), then L8pRnq X 9Bs,r
p pRnq is an

algebra. Moreover, there exists a constant C, depending only on the dimension n, such that

Proof. Using Bony’s decomposition, we have

uv “ 9Tuv ` 9Tvu` 9Rpu, vq.

According to Theorem 4.5, we have

} 9Tuv} 9Bs,rp
ď Cs`1

}u}L8}v} 9Bs,rp
and } 9Tvu} 9Bs,rp

ď Cs`1
}u} 9Bs,rp

}v}L8 .

Now, by applying Theorem 4.6 and using the fact that L8pRnq ãÑ 9B0,8
8 pRnq, we get

} 9Rpu, vq} 9Bs,rp
ď
Cs`1

s
}u} 9B0,8

8
}v} 9Bs,rp

À }u}L8}v} 9Bs,rp
.

This completes the proof of the corollary.
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